• Title/Summary/Keyword: Box girders

Search Result 150, Processing Time 0.027 seconds

Behavior of CFRP strengthened RC multicell box girders under torsion

  • Majeed, Abeer A.;Allawi, Abbas A.;Chai, Kian H.;Badaruzzam, Hameedon W. Wan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.397-406
    • /
    • 2017
  • The use of fiber reinforced polymer (FRP) for torsional strengthening of reinforced concrete (RC) single cell box beams has been analyzed considerably by researchers worldwide. However, little attention has been paid to torsional strengthening of multicell box girders in terms of both experimental and numerical research. This paper reports the experimental work in an overall investigation for torsional strengthening of multicell box section RC girders with externally-bonded Carbon Fiber Reinforced Polymer CFRP strips. Numerical work was carried out using non-linear finite element modeling (FEM). Good agreement in terms of torque-twist behavior, steel and CFRP reinforcement responses, and crack patterns was achieved. The unique failure modes of all the specimens were modeled correctly as well.

An independent distortional analysis method of thin-walled multicell box girders

  • Park, Nam-Hoi;Kang, Young-Jong;Kim, Hee-Joong
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.275-293
    • /
    • 2005
  • When a thin-walled multicell box girder is subjected to an eccentric load, the distortion becomes an important global response in addition to flexure and torsion. The three global responses appear in a combined form when a conventional shell element is used thus it is not an easy task to examine the three global responses separately. This study is to propose an analysis method using conventional shell element in which the three global responses can be separately decomposed. The force decomposition method which was designed for a single-cell box girder by Nakai and Yoo is expanded herein to multicell box girders. The eccentric load is decomposed in the expanded method into flexural, torsional, and multimode distortional forces by using the force equilibrium. From the force decomposition, the combined global responses of multicell box girders can be resolved into separate responses and the distortional response which is of primary concern herein can be obtained separately. It is shown from a series of extensive comparative studies using three box girder bridge models that the expanded method produces accurate decomposed results. Noting that the separate consideration of individual global response is of paramount importance for optimized multicell box girder design, it can be said that the proposed expanded method is extremely useful for practicing engineers.

Lateral ultimate behavior of prestressed concrete box girder bridges (프리스트레스트 콘크리트 박스거더의 횡방향 극한거동 실험 연구)

  • Oh, Byung-Hwan;Choi, Young-Cheol;Lee, Seung-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.479-482
    • /
    • 2005
  • The concrete box girder members are extensively used as a superstructure in bridge construction. The load carrying capacity of concrete box girders in lateral direction is generally influenced by the sizes of haunch and web. The internal upper decks are restrained by the webs and exhibit strength enhancement due to the development of aching action. The current codes do not have generally consider the arching action of deck slab in the design because of complexity of the behavior. However, there are significant benefits in utilizing the effects of arching action in the design of concrete members. The main objective of this paper is to propose a rational method to predict the ultimate load of deck slab by considering various haunch sizes and web restraint effect of concrete box girder bridges. To this end, a comprehensive experimental program has been set up and seven large-scale concrete box girders have been tested. A transverse analysis model of concrete box girders with haunches is proposed and compared with test data. The results of present study indicate that the ultimate strength is significantly affected by haunch dimension. The increase of strength due to concrete arcing action is reduced with an increase of prestressing steel ratio in laterally prestressed concrete box girders and increases with a larger haunch dimension. The proposed theory allows more realistic prediction of lateral ultimate strength for rational design of actual concrete box girder bridges.

  • PDF

Mechanical performance and design optimization of rib-stiffened super-wide bridge deck with twin box girders in concrete

  • Wen, Xiong;Ye, Jianshu;Gai, Xuemei;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.395-414
    • /
    • 2013
  • The present study fundamentally investigated the mechanical performance of the rib-stiffened super-wide bridge deck with twin box girders in concrete, which is a very popular application to efficiently widen the bridges with normal span. The shear lag effects of the specific cross-sections were firstly studied. The spatial stress distribution and local stiffness of the bridge deck with twin box girders were then investigated under several typical wheel load conditions. Meanwhile, a comparative study for the bridge deck with and without stiffening ribs was also carried out during the investigation; thereby, a design optimization for the stiffening ribs was further suggested. Finally, aiming at the preliminary design, an approximate methodology to manually calculate the bending moments of the rib-stiffened bridge deck was analytically proposed for engineers to quickly assess its performance. This rib-stiffened bridge deck with twin box girders can be widely applied for concrete (especially concrete cable-stayed) bridges with normal span, however, requiring a super-wide bridge width due to the traffic flow.

Finite Element Analysis of Distortion of Curved Steel Box Girders (곡선 강상자거더의 뒤틀림 유한요소해석)

  • 최영준;정래영;황선호;강영종
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.428-433
    • /
    • 1999
  • In this study, new finite clement formulations are carried out to analyze the distortion of the curved steel box girders which are susceptible to the torsional loading. For the exact analysis of curved box girders, additional degrees of freedom are added besides the conventional 6 degrees of freedom of general-purpose finite analysis programs, which are torsional warping, distortional warring, and distortion. New formulations were coded into a computer programs. Several numerical examples were presented to demonstrate the validity of developed program.

  • PDF

Optimal Design of Two-Span Steel Box Girder Bridges by LRFD (LRFD에 의한 2경간 강박스형교 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.173-180
    • /
    • 2001
  • In this study steel box girders used as main members of a two span continuous steel bridge, are optimally designed by a Load and Resistance Factor Design method(LRFD) using an numerical optimization method. The width, height, web thickness and flange thickness of the main girder are set as design variables, and light weight design is attempted by choosing the cross-sectional area as an object function. We studied the results of steel box girders and compared with those of 1-type girders. The main program is coded with C++ and connected with optimization modul ADS. which is coded with FORTRAN.

  • PDF

Effects of Flexural Strengths of Double Composite Box Girder Bridges on Different Concrete Depths (이중합성 박스 거더교의 콘크리트 타설 두께에 따른 휨강도 변화)

  • 신동훈;성원진;심기훈;최지훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.285-290
    • /
    • 2002
  • The double composite box girder is a structural system filled with concrete at the bottom of the steel box in the negative moment region increasing the flexural strengths. Flexural strengths of the double composite steel box girders are investigated through a series of the experimental tests and the numerical analysis. The experimental tests are performed on the three kinds of steel box girders with the different concrete depths including loom, 15cm, and 20cm. Moment-curvature relations are calculated based on the sectional analysis method describing the nonlinear natures of concrete and steel. In the finite element analysis the nonlinear nature of concrete is described based on the three dimensional four-parameter constitutive model recently developed and that of steel is described based on von Mises failure criterion. The ultimate flexural capacities of the box girders predicted using sectional analysis and finite element analysis show good agreement with those of the experiments.

  • PDF

A study of decomposition of applied eccentric load for multi-cell trapezoidal box girders (편심하중이 작용하는 제형 다실박스거더에서의 거동분리연구)

  • Kim Seung Jun;Han Keum Ho;Park Nam hoi;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.229-234
    • /
    • 2005
  • Thin-walled multicell box girders subjected to an eccentric load can he produced the three global behaviors of flexure, torsion, and distortion. Specially in railway bridges subjected to much eccentric load, it is quite important to evaluate influences of torsion and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces. we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is reserched by Park, Nam- Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about trapezoidal multi-cell section is insufficient. So, this paper deals with multi-cell trapezoidal box girders. An expanded method, which is based on the force decomposition method for a single cell box girder given by Nakai and Yoo, is developed herein to decompose eccentric load Pinto flexural, torsional, and distortional forces. Derive formulas by decomposition of eccentric load is verified by 3D shell-modelling numerical analysis.

  • PDF

A Study on the Buckling Behavior of the Web of Box Girders (상자형 복부판의 좌굴 거동에 관한 연구)

  • Lee, Sang Woo;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.37-49
    • /
    • 1997
  • The buckling behavior of the web of steel girders are largely dependent on the size and the location of stiffeners and the restraining effect of top and bottom flanges. Elastic and inelastic buckling analyses based or the Spline Finite Strip Method were executed to study the stiffening effect of the longitudinal stiffener on the web of box girders and to find how the top and bottom flanges had effects on the web, where geometric boundary conditions were limited by both hinged, both fixed and the flange sections. The basic assumption for the longitudinal end boundary conditions was that the vertical stiffeners had the rigidity enough to force nil deflection line on the web panel so that the junction line between web and vertical stiffener was assumed to be hinged boundary conditions. The provisions on the longitudinal stiffener of the plate and box girders of the Korean Standard Highway Bridge Specifications(1995) and AASHTO Specifications(1994 LRFD) were compared with the results obtained numerically for the various longitudinal stiffener size of box girders. Simple equations and design curves for the longitudinal stiffener of the web were proposed for the practical use.

  • PDF

Flexural behaviors of full-scale prestressed high-performance concrete box girders

  • Gou, Hongye;Gu, Jie;Ran, Zhiwen;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.595-605
    • /
    • 2020
  • In this study, the flexural behaviors of full-scale prestressed concrete box girders are experimentally investigated. Four girders were fabricated using two types of concrete (compressive strengths: 50 MPa and 70 MPa) and tested under four-point bending until failure. The measured parameters included the deflection, the stress and strain in concrete and steel bars, and cracks in concrete. The measurement results were used to analyze the failure mode, load-bearing capacity, and deformability of each girder. A finite element model is established to simulate the flexural behaviors of the girders. The results show that the use of high-performance concrete and reasonable combination of prestressed tendons could improve the mechanical performance of the box girders, in terms of the crack resistance, load-carrying capacity, stress distribution, and ductility.