• Title/Summary/Keyword: Box Girder Bridge

Search Result 444, Processing Time 0.029 seconds

Optimum Design of PSC Box Girder Bridge considering the Influence of Unequal Span Length Division, Load Factor, and Variable Girder Depth (부등 경간 비율, 하중계수 및 변단면의 영향을 고려한 PSC 박스 거더교의 최적설계)

  • 박문호;김기욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.309-318
    • /
    • 2004
  • This research automatically designed psc-box girder bridges by using an optimum design program and applied the results to the various types of bridges to verify if common facts used in steel bridges or concrete bridges can be applied to PSC bridges. Namely, it investigated appropriate unequal span length division by comparing with bridge of unequal and equal span length division, and verified the influence of the load factors which are changed by time or specification applying the results to various types of bridge. and it applied reinforced concrete bridge and steel bridge's variable girder depth which is slender and effective to save material costs to PSC box girder bridges. Technical solution of optimum design program used SUMT procedure, and Kavlie's extended penalty function to allow infeasible design points in the process. Powell's direct method was used for searching design points and a gradient's approximate method was used to reduce the design time.

An Application of Micro-GA for the Design Optimization of Steel Box Girder Bridges (강상형교 설계최적화를 위한 마이크로 유전알고리즘의 적용)

  • 김제헌;류연선;김정태;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.154-161
    • /
    • 2001
  • A procedure of the design optimization for steel box girder bridges using micro genetic algorithms(μGA) is developed. The effect of population size is investigated and the efficiency and reliability of μGA is demonstrated in the optimum design of steel box girder bridges. Optimum design problems of steel box girder bridges are formulated, where tile design of concrete slab is based on the USD specifications and steel box girder based on LRFD respectively. Design of optimizations of single-span and 2-span steel box girder bridges are performed with the population size of 5, 40, 80, and 120, respectively The μGA-based optimum design of the 3-span steel box girder bridge is compared with SQP results.

  • PDF

A Study on the Optimal Design of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 최적 설계에 관한 연구)

  • 노금래;윤희택;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.251-256
    • /
    • 1999
  • In the preliminary design stage of Prestressed Concrete (PSC) Box Girder Bridges, the design factors(including depth, thickness of web, and jacking force) decided by inexperience designer could heavily affect the final design factors. So there is a possibility that the design ends up with an excessively wasteful design. To aim at an economical design with preventing an excessive design, the optimal design program has been developed by using ADS optimal program and SPCFRAME(PSC Bridge analysis program) in these studies. The optimal design program automatically calculates economically optimized design studies. The optimal design program automatically calculates economically optimized design factors by introducing the optimal design techniques of PSC box girder bridge design. The objective function for optimal design is material cost of box girder and constrained functions are constituted with design specifications and workability. The optimal design techniques used the Sequential Unconstraint Minimization Technique (SUMT) with performing the optimal design program. In this study, We designed unprismatic section bridge and prismatic section bridge in the same design condition by optimal design program developed in this study. By analyzing the results we suggested the practical form of tendon's layout comparing the optimal desingns on the basis of each tendon's layout.

  • PDF

Precast Full Span Construction of Continuous PSC Box Girder Bridge for High Speed Railway (고속철도 PSC 박스거더 연속고의 프리캐스트 경간 일괄 가설)

  • Park Jeong Wha;Kim Kwang Soo;Sim Chungwook;Yoon Chul-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1168-1173
    • /
    • 2004
  • Bridges and tunnels mainly compose the structural system of Kyung-bu high-speed railway in Korea and the prestressed concrete box girder bridges are applied for the most part of bridge structures. Precast full span construction method was practiced in the construction of many prestressed concrete box girder bridges in Kyung-bu high speed railway for the high quality, great construction speed, low construction cost and construction safety. However, there have been no application of this method in continuous bridges until now. Therefore, a new advanced precast full span construction method is developed using pre-tensioning for precast and post-tensioning in alternating the simple span into a continuous bridge system. since the high-speed railway trains can cause dynamic problems in a continuous bridge. This study shows the structural behavior and the construction process of the new advance method.

  • PDF

MINNs for FE model updating of a steel box girder bridge (강박스 거더교의 FE 모델 개선을 위한 평균값 반복 신경망)

  • Vu, Thuy Dung;Cui, Jintao;Kim, Doo-Kie;Koo, Ki-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.57-60
    • /
    • 2011
  • Updating model parameters are required in order to simulate the actual behavior of the dynamic structure. A new strategy, mean-iterative neural networks (MINNs) has been proposed in this paper for model parameter updating of a steel box girder bridge. With new strategy for structural dynamic model updating, it offers many advantages such as potential savings of computational effort, more consistent in reaching convergence. The dynamic response obtained from the experimental test on a two span continuous bridge is used as the target for model updating. And the presented algorithm is applied to update the model parameters. These results show a good possible of using MINNs in practice for dynamic model updating.

  • PDF

A analysis on dyanmic movements of Bridge status using High Rail monitoring systems (상시 계측결과를 이용한 경부고속철도 교량의 동적거동 분석)

  • Chung Jae-Min;Han Sang-Chul;Choi Il-Yoon;Lee Jun-Seok;Seo Hyeong-Lyel
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.934-939
    • /
    • 2004
  • The Korea high-speed rail, based on the French design. It also implements new concept to increase the strength of bridge deck by adding an impact factor (dynamic intensity factor) in static load. In order to assure the dynamic stability, SYSTRA and Jeseph Penzien, a professor in CEC (the US) conducted a dynamic stability review on design phase. Analyzing the review results, they developed design criteria for dynamic behavior. This study deal with operating PSC box GIRDER equipped with measurement equipment or measured data of Seoul $\∼$ Taejeon, P.S.C BOX GIRDER bridge and steel comsition bridge equipped with measurement equipment based on structual knowledge about configuration of measuring sensor, response analysis of structure when train runs was performed by using measured data of PSC box girder to directly compare with design criteria. moreover, the dynamic stability with comparison of high-speed rail construction criteria was reviewed and analyzed based on historical records.

  • PDF

Risk Evaluation of Longitudinal Cracking in Concrete Deck of Box Girder Bridge (콘크리트 박스거더 교량 바닥판의 종방향 균열 위험성 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.84-90
    • /
    • 2008
  • The occurrence of longitudinal cracking in concrete deck of box girder bridge is affected by many factors, but the most important factors are the shrinkage and thermal gradient of deck slabs. In this study, therefore, the tensile stresses at the bottom of deck were calculated from the experimental data(autogeneous shrinkage, drying shrinkage, and thermal gradient of deck slab). Also, the possibility of longitudinal cracks at bottom of deck was estimated. For this purpose, full-scale box girder segments have been fabricated and tested. The thermal gradients and shrinkage strains of deck slabs were measured after placement of concrete. Also, analytic program was conducted for the evaluation of longitudinal cracking in bridge deck considering differential shrinkage induced from non-uniform moisture distributions in concrete.

Dynamic Behavior of Simple Span PSC-BOX Girder Bridge under the Passage of the Urban Maglev Transit (도시형자기부상열차 주행하중에 의한 단경간 PSC-Box 거더교의 동적 거동)

  • Yang, Tae-Sock;Chung, Won-Yong;Lee, Gi-Yeol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.864-869
    • /
    • 2008
  • Magnetic Levitated(Maglev) Vehicle, which utilizes electromagnetic forces between dual-pole electromagnets and a steel rail, generally runs on guideway structures. A prototype of an Urban Maglev Vehicle has been developed and tested in Korea, This study was conducted as a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program, statred in 2006. As the Maglev load is distributed rather than concentrated, a field test was conducted on Simple Span PSC-BOX Girder Bridge(L=25.0m) of the Expo-Maglev test track in Daejeon to examine the dynamic effect of the Maglev load on the bridge. Numerical analyses were also performed up to the maximum passing speed of 110 km/h by 10 km/h increments of Maglev Vehicle using Finite Element model of bridge, and girder deflections, accelerations and Dynamic Amplification Factor (DAF) are analysed.

  • PDF

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

Verification of Manufacturing Process of PSC Box Girder Bridge Segment by 3D Simulation (3차원 시뮬레이션을 활용한 PSC 박스거더교 세그먼트 제작 공정의 검증)

  • Kim, Min-Seok;Son, Heung-Rak;Lee, Kwang-Myong;Park, Young-Ha;Park, Min-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.235-240
    • /
    • 2008
  • PSC box girder bridges are built through the repetitive manufacturing process of concrete segment. However, during the initial segment manufacturing stage, design change may occur frequently due to design errors and interferences between components, resulting in the extension of segment manufacturing period. This paper aims to verify the manufacturing process of PSC box girder segment by 3D simulation technique. All the components of a segment were modelled and assembled by simulation technique and then, some design errors were found and revised appropriately to optimize the manufacturing process of segment. Consequently, 3D simulation technique would be promising to improve the quality of the segment and to reduce its manufacturing time and cost.

  • PDF