• Title/Summary/Keyword: Box Behnken Design

Search Result 180, Processing Time 0.029 seconds

Simulation-based Prediction Model of Draw-bead Restraining Force and Its Application to Sheet Metal Forming Process (유한요소법을 이용한 드로우비드 저항력 예측모델 개발 및 성형공정에의 적용)

  • Bae, G.H.;Song, J.H.;Huh, H.;Kim, S.H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.55-60
    • /
    • 2006
  • Draw-bead is applied to control the material flow in a stamping process and improve the product quality by controlling the draw-bead restraining force (DBRF). Actual die design depends mostly on the trial-and-error method without calculating the optimum DBRF. Die design with the predicted value of DBRF can be utilized at the tryout stage effectively reducing the cost of the product development. For the prediction of DBRF, a simulation-based prediction model of the circular draw-bead is developed using the Box-Behnken design with selected shape parameters such as the bead height, the shoulder radius and the sheet thickness. The value of DBRF obtained from each design case by analysis is approximated by a second order regression equation. This equation can be utilized to the calculation of the restraining force and the determination of the draw-bead shape as a prediction model. For the evaluation of the prediction model, the optimum design of DBRF in sheet metal forming is carried out using response surface methodology. The suitable type of the draw-bead is suggested based on the optimum values of DBRF. The prediction model of the circular draw-bead proposes the design method of the draw-bead shape. The present procedure provides a guideline in the tool design stage for sheet metal forming to reduce the cost of the product development.

  • PDF

Optimal design of car suspension springs by using a response surface method (반응 표면 분석법을 활용한 자동차용 현가스프링 최적화 설계)

  • Yoo, Dong-Woo;Kim, Do-Yeop;Shin, Dong-Gyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.246-255
    • /
    • 2016
  • When spring of the suspension is exerted by an external load, a car should be designed to prevent predictable damages and designed for a ride comfort. We used experiments design to design VON-MISES STRESS and K, a constant, of spring of suspension which is installed in a car as a goal level. We analyzed the result from Edison's Elastic - Plastic Analysis SW(CSD_EPLAST) by setting D, d, n as external diameter of coil, internal diameter of coil, the number of total coil respectively. The experiment design let the outcome be as Full-second order by using Box-Behnken which is one of response surface methods. Experimented and analyzed results based on the established experiments design, We found out design parameter which has desired VON-MISES STRESS and the constant K. Additionally, we predicted life time of when the external load was exerted by repeated load by using fatigue equation, and verification of plastic deformation has also been made. Additionally we interpreted a model, which is formed by optimized design parameter, with linear analysis and non-linear analysis, at the same time we also analyzed plastic deformation with the values from the both models. Finally, we predicted fatigue life of optimized model by using fatigue estimation theory and also evaluated a ride comfort with oscillation analysis.

  • PDF

Application of response surface design for the optimization of producing lightweight aerated concrete with blast furnace slag (반응표면설계법(反應表面設計法)을 이용한 고로(高爐)슬래그 경량기포(輕量氣泡)콘크리트 제조(製造)의 최적화(最適化))

  • Kim, Sang-Woo;Oh, Su-Hyun;Jung, Moon-Young
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.39-47
    • /
    • 2012
  • This study was conducted to optimize a mixing design of lightweight aerated concrete with the blast furnace slag(BFS) using Box-Behnken method, one of response surface designs. The lightweight aerated concrete with the BFS was made on the conditions of steam curing method at atmospheric pressure. The experimental factors were unit Water(W)/total powder($P_d$) ratio, BFS replacement percentage and Al powder addition based on the total powder (${P_d}^*$%). From the results of the response surface analysis, regression models for dried specific gravity and compressive strength of the lightweight aerated concrete were derived. When the target values for dried specific gravity and compressive strength of the lightweight aerated concrete were set at 0.72 and 4.42 MPa respectively, its optimized mixing conditions driven from the regression models were 0.62 of $W/P_d$ ratio, 35.5% of BFS replacement and 0.05% of Al powder addition. This experimental design model was found to be credible by measuring the dried specific gravity and compressive strength of the sample made from the above mixing conditions.

Study on Analysis of Transfer Torque and Improvement of Transfer Torque in Non-Contact Permanent Magnet Gear (비접촉 영구자석 기어의 전달토크 분석 및 전달토크 향상에 대한 연구)

  • Park, Gyu-Sang;Kim, Chan-Ho;Kim, Yong-Jae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.181-188
    • /
    • 2015
  • The non-contact permanent magnet gear has advantages of high efficiency and improved reliability. It has other advantages of no mechanical friction loss, very little noise and vibration, and no need for lubricant. With these advantages, the non-contact permanent magnet gear that solves the physical contact problem of the mechanical gear has drawn attention. Due to this unique non-contact characteristic, the non-contact permanent magnet gear which is capable of non-contact torque transmission has replaced mechanical gear. The mechanical gears which is in many fields of the modern industry, is used mostly for power transmitting mechanical devices. However, it also has the problem of a low torque density, which requires improvement. In this paper, a novel pole piece shape is proposed in order to improve the problem of low torque density of the non-contact permanent magnet gear. The experiment data required for predicting the relationships among them are obtained using finiteelement Operating method based on two-dimensional (2-D) numerical analysis. Therefore, this paper derived an optimal model for thenon-contact permanent magnet gear with the novel pole piece using the Box-Behnken design, and the validity of the optimal design of the proposed pole piece shape through variance analysis and regression analysis demonstrated. In this paper, we performed the thransfer torque analysis in order to improve the torque density and power density, we have performed on optimal design of proposed pole piece shape using box-behnken.

Optimization of Laccase Production from Bacillus sp. PK4 through Statistical Design of Experiments

  • Rajeswari, Murugesan;Bhuvaneswari, Vembu
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.330-342
    • /
    • 2017
  • Statistical design of experiments was employed to optimize the media composition for the production of laccase from Bacillus sp. PK4. In order to find the key ingredients for the best yield of enzyme production from the selected eleven variables viz yeast extract, glucose, zinc sulphate, copper sulphate, potassium chloride, magnesium sulphate, calcium chloride, ferrous sulphate, sodium chloride, potassium dihydrogen phosphate ($KH_2PO_4$) and dipotassium hydrogen phosphate ($K_2HPO_4$), Plackett-Burman design was applied. The $MgSO_4$, $FeSO_4$, and $CuSO_4$ showed positive estimate, and their concentration optimized further. The steepest ascent method and Box-Behnken method revealed that 1.5 mM $MgSO_4$, 0.33 g/l $FeSO_4$ and 1.41 mM $CuSO_4$ were optimal for the laccase production by Bacillus sp. PK4. This optimization strategy leads to enhancement of laccase production from 2.13 U/ml to 40.79 U/ml. Agro-wastes residues replace the carbon source glucose in the optimized media namely sugarcane bagasse, wheat bran, rice husk, and groundnut shell, among these groundnut shells (117 U/ml) was found to enhance the laccase production significantly. The laccase produced by Bacillus sp. PK4 was found to have the potential to degrade persistent organic pollutant benzo[a]pyrene.

Development and Optimization of a Novel Sustained-release Tablet Formulation for Bupropion Hydrochloride using Box-Behnken Design

  • Cha, Kwang-Ho;Lee, Na-Young;Kim, Min-Soo;Kim, Jeong-Soo;Park, Hee-Jun;Park, Jun-Sung;Cho, Won-Kyung;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.313-319
    • /
    • 2010
  • The objectives of this study were to evaluate the effect of formulation ingredients on the drug release and to optimize the novel sustained release matrix tablet formulations of bupropion hydrochloride. A three factor, three-level Box-Behnken design was used for the optimization procedure, with the amounts of PEO ($X_1$), citric acid ($X_2$) and Compritol 888 ATO ($X_3$) as the independent variables. The selected dependent variables were the cumulative percentage values of bupropion hydrochloride that had dissolved after 1, 4 and 8 hr. Various dissolution profiles of the drug from sustained release matrix tablets were obtained. Optimization was performed for $X_1$, $X_2$ and $X_3$ using the following target ranges; $30%{\leq}Y_1{\leq}45%$; $70{\leq}Y_2{\leq}85%$; $85%{\leq}Y_3{\leq}100%$. The optimized formulation for bupropion hydrochloride was achieved with 12.5% PEO ($X_1$), 2.5% citric acid ($X_2$) and 10% Compritol 888 ATO ($X_3$). The sustained release matrix tablets with the optimized formulation provided a release profile that was close to predicted values. In addition, the dissolution profiles of the sustained release matrix tablet with the optimized formulation were similar to those of the commercial product Wellbutrin$^{(R)}$ SR tablets ($f_2$=79.83).

A Study on the Properties of Foamed Concrete with Plaster Using the Experimental Design (실험계획법을 이용한 석고 혼입 기포콘크리트의 특성에 관한 연구)

  • Lee, Sang-An;Kim, Wha-Jung;Yoon, Sang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.130-137
    • /
    • 2013
  • This research was performed through the experimental design to get the statistical analysis on foamed concrete mixed plaster with hydrogen peroxide. In this experiment, we set the ratio of each material, which part of lightweight concrete, as experimental factors and evaluated on the mechanical properties by statistical analysis for response variables obtained from experiments. Experimental factors are plaster replacement, water binder ratio, and hydrogen peroxide ratio. Response variables are dry density, compressive strength, and flexural strength. Mixing design of the foamed concrete set up a total of 15 experimental points by Box-Behnken (BB) method of the response surface analysis. Thus, the results of a study were summarized as follows. Values of the probability in experimental factors (plaster replacement, water binder ratio and hydrogen peroxide ratio) on the response variables were estimated to be significant at the 95% of confidence limit. On response surface analysis for dry density of foamed concrete, water binder ratio and hydrogen peroxide ratio were estimated to be significant (${\alpha}$ = 0.05), and the relationship between the amount of void and the water content for dry density is inverse proportional. On response surface analysis for the compressive strength of foamed concrete, water binder ratio, hydrogen peroxide ratio and (hydrogen peroxide ratio)$^2$ was estimated to be significant (${\alpha}$ = 0.05). On response surface analysis for the flexural strength of foamed concrete, water binder ratio, hydrogen peroxide ratio was estimated to be significant (${\alpha}$ = 0.05). Through multi response surface analysis, we found the optimal area that meets performance goals.

Optimization of Extraction Conditions for Mixture of Camellia sinensis L. and Artemisia argyi by Response Surface Methodology (반응표면분석을 이용한 녹차와 애엽 혼합물의 추출조건 최적화)

  • Kim, Young-Hyun;Kim, Woo-Sik;Kim, Jae-Min;Choi, Sun-il;Jung, Tae-Dong;Lee, Jin-Ha;Kim, Jong-Dai;Lim, Jae Kag;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.278-285
    • /
    • 2016
  • This study used response surface methodology (RSM) in an effort to optimize the ultrasoundassisted extraction condition of Camellia sinensis L. and Artemisia argyi mixture in order to increase extraction yield in the extract. The effects of three independent variables, $X_1$ (Mixture ratio, 60-80%), $X_2$ (Ratio of water to raw material, 20~100 mL/g), and $X_3$ (Extraction time, 25-145 min), were investigated at three levels using Box-Behnken design (BBD) to obtain the highest extraction efficiency. Y (Extraction yield) was chosen as dependent variable. Our result showed that the coefficient of determination ($R^2$) of the model was 0.9747, with significant at the level of p < 0.002. Furthermore, the predicted values of each variable were similar to the actual values. The optimum extraction conditions were as follows: mixture ratio of 85.86%, ratio of water to raw material of 92.73 mL/g, and extraction time of 56.52 min. At these conditions, predicted extraction yield was 30.03%. The analysis of variance (ANOVA) indicated a high goodness of model fit and the success of the RSM method for optimizing extraction conditions of Camellia sinensis L. and Artemisia argyi mixture.

Optimization of a Process for Extraction of Petasin from Petasites japonicus Leaves by Response Surface Methodology (반응표면분석법에 의한 머위 잎의 petasin 추출공정 최적화)

  • Lee, Dong Wan;Lee, Se Yeul;Chung, Hun Sik;Choi, Young Whan;Im, Dong Soon;Lee, Young Guen
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1360-1364
    • /
    • 2013
  • Petasin extracted from Petasites japonicus leaves has been well known to be effective in the treatment of allergic asthma. This study was carried out to optimize the extraction process of petasin from P. japonicus leaves by response surface methodology (RSM). The dried powder of P. japonicus leaves was extracted at ethanol concentrations ranging from 40% to 80%, extraction rpm ranging from 125 rpm to 225 rpm, and extraction time ranging from 1 to 3 hours. The effects of the extraction conditions on the dry yield and petasin content of the extracts were investigated using a second-order Box-Behnken design. The petasin content was significantly affected by ethanol concentration, extraction rpm, and extraction time, tending to increase more with increasing ethanol concentration. The optimum condition for petasin extraction from Petasites japonicus leaves was 79.92% in ethanol concentration, 178.10 rpm in extraction rpm, and 2.06 hours in extraction time, respectively.

Design of 3-Axis Focus Mechanism Using Piezoelectric Actuators for a Small Satellite Camera (소형 위성 카메라의 압전작동기 타입 3-축 포커스 메커니즘 설계)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 2018
  • For Earth observation, a small satellite camera has relatively weak structural stability compared to medium-sized satellite, resulting in misalignment of optical components due to severe launching and space environments. These alignment errors can deteriorate the optical performance of satellite cameras. In this study, we proposed a 3-axis focus mechanism to compensate misalignment in a small satellite camera. This mechanism consists of three piezo-electric actuators to perform x-axis and y-axis tilt with de-space compensation. Design requirements for the focus mechanism were derived from the design of the Schmidt-Cassegrain target optical system. To compensate the misalignment of the secondary mirror (M2), the focus mechanism was installed just behind the M2 to control the 3-axis movement of M2. In this case, flexure design with Box-Behnken test plan was used to minimize optical degradation due to wave front error. The wave front error was analyzed using ANSYS. The fabricated focus mechanism demonstrated excellent servo performance in experiments with PID servo control.