• Title/Summary/Keyword: Bow Shock

Search Result 33, Processing Time 0.024 seconds

Comparison between observation and theory for the stand-off distance ratios of CMEs and their associated ICMEs

  • Lee, Jae-Ok;Moon, Yong-Jae;Lee, Jin-Yi;Jang, Soojeong;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.81.3-81.3
    • /
    • 2016
  • We examine whether the observational stand-off distance ratios of CMEs and their associated ICMEs could be explained by theoretical model or not. For this, we select 16 CME-ICME pairs from September 2009 to October 2012 with the following conditions: (1) limb CMEs by SOHO and their associated ICMEs by twin STEREO spacecraft and vice versa when both spacecraft were roughly in quadrature; (2) the faint structure ahead of a limb CME is well identified; and (3) its associated ICME clearly has a sheath structure. We determine the observational stand-off distance ratios of the CMEs by using brightness profiles from LASCO-C2 (or SECCHI-COR2) observations and those of the ICMEs by solar wind data from STEREO-IMPACT/PLASTIC (or OMNI database) observations. We also determine the theoretical stand-off distance ratios of the CME-ICME pairs using semi-empirical relationship based on the bow shock theory. We find the following results. (1) Observational CME stand-off distance ratio decreases with increasing Mach number at the Mach numbers between 2 and 6. This tendency is consistent with the results from the semi-empirical relationship. (2) The observational stand-off distance ratios of several ICMEs can be explained by the relationship.

  • PDF

Computational Analysis of the Delta Wing-Cylindrical Body Configuration Using the Three-Dimensional Patched-Grid Algorithm (3차원 patched-grid 알고리즘을 이용한 삼각 날개-원통형 동체 형상 전산 해석)

  • Park, Hyeon Don;Kim, Young Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • A structured grid system can be efficiently constructed by applying the patched-grid algorithm that alleviates many constraints of the conventional structured grid system. Three approaches were applied to case 4 of the EFD-CFD workshop: delta wing-cylindrical body shape to solve the existing grid generation problems and verify the results by comparing them with experimental data. Surface pressure distributions slightly differed from the experimental data at high angles of attack. The slope variation of the pitching moment with Mach number is analyzed and the variation can be explained with the tuck under phenomenon. In the supersonic region, the bow shock waves in front of the shape expand the region generating lift up to the rear of the configuration. Also, the tendency of the pitching moment with both Mach number and angle of attack was analyzed by comparing the positions of the center of pressure and the center of gravity.

Magnetospheric and ionospheric responses to the passage of solar wind discontinuity on 24 November 2008

  • Kim, Khan-Hyuk;Park, Jong-Sun;Lee, Dong-Hun;Park, Young-Deuk;Angelopoulos, V.;Nishitani, N.;Hori, T.;Shiokawa, K.;Yumoto, K.;Baishev, D.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.91-91
    • /
    • 2011
  • The passage of the interplanetary discontinuity (i.e., sudden increases in the solar wind speed, density, and IMF strength) was detected by ACE near GSE (x, y, z) ~ (222, -36, 3) Re upstream of Earth around 22:48 UT on November 24, 2008. About 55 min later, this solar wind discontinuity was observed by Geotail near GSE (x, y, z) ~ (23, 18, -7) Re in front of Earth's bow shock. From the propagation time of the solar wind discontinuity between ACE and Geotail, it is expected that the discontinuity front is aligned with the Parker spiral and strikes the postnoon dayside magnetopause first. Using coordinated multi-point measurements (THEMIS and GOES) at or in geosynchronous orbit, we observed a tailward propagating sudden impulse (SI), excited by the interplanetary discontinuity, around 23:50 UT with its front retaining alignment similar to that of solar wind discontinuity. The SI event appears a negative-then-positive variation in the H component at high latitude Chokurdakh (CHD: MLAT ~ 64.7 deg) in the prenoon sector, which is opposite sense of normal SI event. During the positive deflection at CHD, the SuperDARN Hokkaido radar detected the downward motion of the ionosphere, implying westward electric field enhancement, at subauroral latitudes near CHD meridian. In our study we will discuss magnetospheric and ionospheric responses to the passage of the solar wind discontinuity using multi-point observations in space and on the ground.

  • PDF