• Title/Summary/Keyword: Bovine cloned placenta

Search Result 8, Processing Time 0.023 seconds

Analysis of TIMP-2 and Vimentin Protein Expression and Epigenetic Reprogramming in Cloned Bovine Placentae

  • Kim, Hong-Rye;Han, Rong-Xun;Lee, Hye-Ran;Yoon, Jong-Taek;Cheong, Hee-Tae;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • The objective of this study was to analyzed pattern of proteins expression abnormally in cloned bovine placenta. TIMP-2 protein whose function is related to extracellular matrix degradation and tissue remodeling processes was one of differentially up-regulated proteins in SCNT placenta. And one of down-regulated protein in SCNT placenta was identified as vimentin protein that is presumed to stabilize the architecture of the cytoplasm. The expression patterns of these proteins were validated by Western blotting. To evaluate how regulatory loci. of TIMP-2 and vimentin genes was programmed reprogramming in cloned placenta. the status of DNA methylation in the promoter region of TIMP-2 and vimentin genes was analyzed by sodium Bisulfite mapping. The DNA methylation results showed that there was not difference in methylation pattern of TIMP-2 and vimentin loci between cloned and normal placenta. Histone H3 acetylation state of the nucleosome was analyzed in the cloned placental and normal placenta by Western blotting. A small portion of the protein lysates were subjected to Western blotting with the antibodies against anti acetyl-Histone H3. Overall histone H3 acetylation state of SCNT placenta was significantly higher than those of normal placenta cells. It is postulated that cloned placenta at the end of gestation seems to be unusual in function and morphology of placenta via improper expression of TIMP-2 and vimentin by abnormal acetylation states of cloned genome.

Differentially Expression Genes of Normal and Cloned Bovine Placenta

  • Kim, M.S.;Lee, Y.Y.;Park, J.J.;H.Y. Kang;Y.M. Chang;Yoon, J.T.;K.S. Min
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.82-82
    • /
    • 2003
  • Offspring have been produced from somatic cells in a number of species. This biotechnology introduced a new phenomenon in reprogramming and differentiation of somatic cell, namely totipotency. However, birth of oversized calves and perinatal abnormalities such as increased gestation length, lack of spontaneous parturition, higher incidence of dystocia, and reduced perinatal viability of offspring are frequently observed in pregnancies of cloned bovine fetuses. Disturbance of feto-placenta has been proposed as likely causes for abnomal growth. However. Little is known the mechanism responsible for the perinatal problems. Therefore, we focused on gestation length in somatic cell nuclear recipient cows. To solve this issues, placental tissues of control and cloned bovine were obtained by a cesarean section (C-section) before 5 days of paturition. Total RNA from control and cloned bovine placenta was extractd by TRIzol reagent. GeneFishing DEG kits (Seegene) were used to identify differentially expression genes. Total RNA (3 ug) were synthesized by M-MLV reverse transcriptase (200 u/ul) with 10 uM dT-annealing control primer (ACP1) at 42C for 90 min. Then, first-strand cDNA (50 ng) was amplified using the 5 uM arbitary ACP (1-20) and 10 uM dT-ACP2 primers. Some specific expression genes were amplified, Now, we are cloning and sequencing. These finding strongly can be support to solve the problems for parturition delay in nuclear transfer cows, suggest that placenta specific proteins are key indicators for the aberration of gestation and placental function in cows.

  • PDF

Expression and Characterization of Bovine DNA Methyltransferase I

  • Chang, Yoo-Min;Yang, Byoung-Chul;Hwang, Seong-Soo;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • In this study, bovine Dnmt1 cDNA was sequenced and detected Dnmt1 mRNA level in bovine tissues by northern blot, methylation pattern of genome by southern blot, specific localization of Dnmt1 in mouse and bovine preimplantation embryos by immunocytostaining and Dnmt1 protein level in ovary and testis by western blot. Bovine Dnmt1 cDNA sequence showed more homology with that of human than mouse and rat. The RNA level of Dnmt1 was 10 times higher expression in placenta than other tissues. This indicates that placenta was hypermethylated compared to others organs. The genomic DNA could not be cut by a specific restriction enzyme (HpaII) in placenta, lung and liver of bovine. It suggests that Dnmt1 in some somatic cells was already methylated. Dnmt1, which has the antibody epitope 1316~1616, was distributed in nucleus and cytoplasm including the stage of pronuclear stage and maturation of oocyte and gradually weaken to blastocyst stage compare to negative. In addition, Dnmt1 was strongly expressed in tetraploid embryo and cloned 8-cell than IVF 8-cell. An aberrant pattern of DNA methylation in cloned embryo may be abnormal development of fetus, embryonic lethality and placenta dysfunction. The somatic specific band (190kDa) was appeared in ovary and testis, but oocyte specific band (175kDa) was not. Further investigations are necessary to understand the complex links between the methyltransferases and the transcriptional activity of genes in the cloned bovine tissues.

Analysis of Differentially Expressed Genes in Cloned Bovine Placenta

  • Park, Hee-Ja;Ko, Yeoung-Gyu;Hwang, Seong-Soo;Yang, Byoung-Chul;Seong, Hwan-Hoo;Oh, Seok-Doo;Hwang, Sue-Yun;Min, Kwan-Sik;Yoon, Jong-Taek
    • Reproductive and Developmental Biology
    • /
    • v.33 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • Placenta is the main nutrition source for the fetus during pregnancy. Thus, it has a pivotal function in the pregnant process. Many functions of the placenta have been elucidated. An abnormal placenta is associated with a high rate of pregnancy failure in somatic cloned bovine. Differentially expressed genes (DEGs) were examined in a comparison between normal and cloned bovine placenta using annealing control primer (ACP)-based GeneFishing PCR. Using 120 ACPs, nearly 80 genes were identified and the fragments of 42 DEGs were sequenced. 38 of these genes were known genes and four were unknown. To determine the DEGs result, six target clones expressing on one-side of a normal and a clone placenta were selected. Through an analysis of the target genes using the real-time PCR, the expressing pattern was found to be somewhat different from the DEGs. Additionally, several genes appeared with the same expression pattern. Taken together, this suggests that the target genes would be essential for research into what influences the placental formative mechanisms during fetal development.

Characterization of Placental Proteins in Bovine Somatic Cell Clone Fetuses

  • Woo, Jei-Hyun;Ko, Yeoung-Gyu;Kim, Bong-Ki;Kim, Jong-Mu;Lee, Youn-Su;Kim, Nam-Yun;Im, Gi-Sun;Yang, Boung-Chul;Seong, Hwan-Hoo;Jung, Jin-Kwan;Kwun, Moo-Sik;Chung, Hak-Jae
    • Reproductive and Developmental Biology
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 2005
  • Somatic cell nuclear transfer in cattle has limited efficiency in terms of production of live offspring due to high incidence of fetal failure after embryo transfer to recipients. Such low efficiency of cloning could possibly arise from abnormal and poorly developed placenta. In the present study the placental proteome in late pregnancy established from in vitro fertilization (IVF) and nuclear transfer (NT) was analysed. Proteome alternation was tested using two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI- TOF). Comparing placenta from NT embryos to those from IVF counterparts, significant changes in expression level were found in 18 proteins. Of these proteins 12 were not expressed in NT placenta but expressed in IVF counterpart, whereas the expression of the other 6 proteins was limited only in NT placenta. Among these proteins, cytokeratin 8 and vimentin are considered to be involved in regulation of post-implantation development. In particular, cytokeratin 8 and vimentin may be used as makers for placental development during pregnancy because their expression levels changed considerably in NT placental tissue compared with its IVF counterpart. Data from 2-DE suggest that protein expression was disorientated in late pregnancy from NT, but this distortion was eliminated with progression of pregnancy. These findings demonstrate abnormal placental development during late pregnancy from NT and suggest that alterations of specific placental protein expression may be involved in abnormal function of placenta.