• Title/Summary/Keyword: Bovine Growth Hormone

Search Result 48, Processing Time 0.039 seconds

Expression of Bovine Growth Hormone Gene in a Baculovirus, Hyphantria cunea Nuclear Polyhedrosis Virus

  • Park, Kap-Ju;Lee, Keun-Kwang;Kang, Bong-Ju;Cha, Sung-Chul;Lee, Hyung-Hoan
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.2
    • /
    • pp.129-138
    • /
    • 1998
  • Bovine growth hormone (bGH) gene was expressed in an insect Spodoptera frugiperda cell line using a Baculovirus, Hyphantria cunea nuclear polyhedrosis virus (HcNPV). The bGH gene in pbGH plasmid was sequenced and amplified by PCR technique with two primers containing NcoI sites. The bGH gene consisted of 654 bp (217 amino acid residues), the 5'-untranslated region of the cloned bGH cDNA contains 56 bp, and the 3'-untranslated region contains 145 bp and two pallindromic regions. The amplified bGH gene DNA fragment (654 bp) was inserted into the NcoI site of the pHcEVII vector, which was named pHcbGH. The pHcbGH transfer vector DNA and the wild type HcNPV DNA were cotransfected into S. frugiperda cells to construct a recombinant virus. Eight recombinant viruses were selected and named HcbGH. One clone, HcbGH-4-1 showed largest plaque size, therefore the recombinant virus was further studied. The multiplication pattern of the recombinant HcbGH-4-1 was similar to that of the wild type HcNPV. The bGH gene DNA in the HcbGH-4-1 recombinant was confirmed by Southern blot hybridization. The amount of the bGH (217 amino acid residues, 21 kDa) produced in S. frugiperda cells infected with the HcbGH-4-1 recombinant was approximately 5.5 ng per ml ($10^6$ cells) by radioimmunoassay.

  • PDF

Effect of Viral Enhancers on the Tissue-Specific Expression of Bovine Growth Hormone Gene (소성장호르몬 유전자의 조직 특이성 발현에 미치는 바이러스 engancer의 영향)

  • 박계윤;김수미;노정혜
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.85-91
    • /
    • 1989
  • The effect of SV40 and murine cytomegalovirus (MCMV) enhancers on the general and tissue-specific gene expression was investigated. Recombinant plasmids containing these transcriptional engancers downstream of a structural gene for chloramphenicol acetyl transferase (CAT) were constructed. The transient expression of CAT gene from these plasmids was measured in monkey (CV1PD) and HeLa cells. Both SV40 and MCMV engancers activated the expression of CAT gene by more than 20 and 150 folds, respectively, compared with engancerless plasmids. When the SV40 promoter, upstream of CAT gene, was replaced with 2.2 kbp of promoter regulatory region of bovine growth hormone (bGH) gene, there was no expression of CAT even in the presence of enhancers, reflecting the tissue-specific expression of bGH genes. However, when the bGH regulatory region was shortened to 230 bp, the expression level increased dramatically in the presence of SV40 enhancers. In contrast, the expression from the shortened promoter was only marginally activated by the stronger MCMV enhancer.

  • PDF

The Relation between Genetic Polymorphism Markers and Milk Yield in Brown Swiss Cattle Imported to Slovakia

  • Chrenek, P.;Huba, J.;Vasicek, D.;Peskovicova, D.;Bulla, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1397-1401
    • /
    • 2003
  • The aim of this study was to determine genotypes of four genetic markers and to investigate their association with milk production traits in Brown Swiss cattle imported to Slovakia. The bovine $\kappa$-casein, $\beta$-lactoglobulin, growth hormone and prolactin genotypes of 107 cows were identified by polymerase chain reaction. Effects all four genetic markers on milk, fat, protein and lactose yields and fat, protein and lactose percentage were estimated from a data set of 249 lactations. The frequency of desirable B allele of $\kappa$-casein gene to milk production was 0.46, alleles A of $\beta$-lactoglobulin gene was 0.55, allele and L of growth hormone gene was 0.45 and allele A and B of bovine prolactin gene were 0.61 and 0.39. The results of milk production obtained in our work showed that BB genotypes of $\kappa$-CN gene, AA genotypes of $\beta$-LG gene, LL genotypes of bGH gene were significantly associated with better milk production traits, mainly about the fat content. Association of a bovine prolactin genotypes with milk production were not found.

Optimal Milieu for Culturing Porcine Sertoli Cell

  • Jabed Md. Anower;Kamal Tania;Kim, Byung-Ki
    • Reproductive and Developmental Biology
    • /
    • v.30 no.3
    • /
    • pp.163-167
    • /
    • 2006
  • The purpose of the present study was to establish culture conditions for the in vitro study of the neonatal piglet Sertoli cell. Isolation for the culture of Sertoli cell was established using collagenase and pancreatin digestion of testicular tissues. The effects of various culture media, fetal bovine serum(FBS), follicular stimulating hormone(FSH), epidermal growth factor(EGF) and insulin-transferrin-sodium selenite(ITS) on growth of neonatal piglet Sertoli cells were investigated. The mitogenic effects of Dulbecco's modified Eagle's medium+Ham's F-12 medium was higher than other media used in this experiment. The addition of 1% FBS in cultures was necessary for attachment of Sertoli cell clusters. However, except FBS and EGF, FSH and ITS did not stimulate Sertoli cell proliferation. When Sertoli cells isolated from neonatal piglets were cultured in Dulbecco's modified Eagle's medium+Ham's F-12 medium supplemented with 1% FBS, FSH EGF and ITS, the yield and plating efficiency of Sertoli cells were largely increased. Confluency of Sertoli cells was reached as early as 4 days of culture. The method described here reduces or eliminates many of the drawbacks of the conventional procedures used to isolate and culture of Sertoli cells, thus providing a useful tool in studies of growth kinetics and regulation of cell proliferation in vitro.

Regulation of the Mammary Tissue-Specific Promoter Activity by Endogenous Hormones in Cultured Mammary Cells (배양 유선세포에서 내생성 호르몬에 의한 유선특이 유전자 프로모터의 활성 조절)

  • 윤영승;정선미;이성호;김재만
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.221-229
    • /
    • 2000
  • Lactogenesis in mammary gland is under the control of various lactogenic hormones including hypophysial growth hormone and prolactin. Recent studies reported that such pituitary lactogenic hormones are also expressed in mammary cells as well as in pituitary. For the purpose to analyze the role of these non-pituitary hormones in mammary cells, $\beta$ -lactoglobulin (BLG) gene promoter was selected as a model system. The growth hormone suppressed BLG promoter activity when it was applied alone on cultured mammary HCll cells. Along with lactogenic hormones such as insulin, prolactin and glucocorticoid, however, it significantly enhanced expression of BLG promoter activity in a dosage- dependent manner. Exogenous expression of the growth hormone gene in cultured mammary cells also strongly promoted cell proliferation and BLG promoter activity. Bovine growth hormone promoter, on the contrary, did not revealed any notable activity. Above results suggest that endogenous expression of the pituitary hormone genes in mammary cells is not a regulation leakage but a physiological control. Moreover, artificial overproduction of the growth hormone in mammary gland may help increase milk production.

  • PDF

Production of Bovine Nuclear Transfer Embryos Using Fibroblasts Transfected with Single-Chain Human Follicle-Stimulating Hormone Gene

  • Yoon, Ji Young;Kwon, Mo Sun;Kang, Jee Hyun;Ahn, Kwang Sung;Kim, So Seob;Kim, Nam-Hyung;Kim, Jin-Hoi;Kim, Teoan;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.168-173
    • /
    • 2009
  • Human follicle-stimulating hormone (hFSH) is a pituitary glycoprotein that regulates follicular development and ovulation. Clinically, hFSH has been used to induce follicular growth in infertile women. The hormone is composed of heterodimers, including a common ${\alpha}$ subunit among the gonadotropin family and a hormone-specific ${\beta}$ subunit. Since assembly of the heterodimer is a rate-limiting step in the production of functional hFSH, transgenic clone cows carrying a single-chain hFSH transgene may efficiently produce functional hormone. Genes encoding the ${\alpha}$ and ${\beta}$ subunits of hFSH were linked using the C-terminal peptide sequence from the ${\beta}$ subunit of human chorionic gonadotropin. Bovine fetal fibroblasts were transfected with the gene construct, including the goat ${\beta}$-casein promoter and a single-chain hFSH coding sequence. Transfected fibroblasts were transferred into enucleated oocytes, and individual nuclear transfer (NT) embryos developed to the blastocyst stage were analyzed for the transgene by polymerase chain reaction. Seventy eight blastocysts (30.8%) were developed from 259 reconstructed embryos. Among these blastocysts, the hFSH gene was detected in 70.8% (34/48) of the embryos. Subsequent transfer of hFSH-transgenic clone embryos to 31 recipients results in 11 (35.5%) early pregnancies. However, all fetuses were lost before reaching day 180 of gestation. The results from this study demonstrated that bovine NT embryos carrying single-chain hFSH could be produced, and further extensive studies in which NT embryos are transferred to more recipients may give rise to single chain hFSH-transgenic cows for biomedical applications.

A Missense Mutation in Exon 5 of the Bovine Growth Hormone Gene (소 성장호르몬 유전자의 Exon 5번에서의 새로운 다형성 연구)

  • Yoon, D. H.;Kim, T. H.;Lee, K. H.;Park, E. W.;Lee, H. K.;Cheong, I. C.;Hong, K. C.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • Growth Hormone (GH) gene is a member of gene family through the evolutionary process from a small common ancestral gene by a series of gene duplications. The role of the GH in growth and performance controls has been extensively studied in human, mice and livestock. Many researchers have considered GH as a strong candidate gene for evaluation of genetic polymorphisms that could be associated with economic traits in cattle. We report here a novel missense mutation within the exon 5 of the bovine Growth Hormone (bGH) gene. We could amplified 522 bp fragments from eight unrelated Hanwoo cattle by PCR, then, subsequently cloned and sequenced. An Msp I RFLP corresponding to a C to T transition was observed at position 2258 nt. From this result, we could predict a missense mutation (Arg to Trp) at codon 166 in a highly conserved region among many mammals. Codominant Mendelian segregation of the two alleles, Msp I (+) and Msp I (-), was observed in two full-sib F2 families (n = 32, African taurine Bos taurus ${\times}$ African zebu Bos indicus) and eight half-sib Hanwoo families. For the availability of genetic marker, we have performed PCR-RFLP with a large number of individual animals from 15 different cattle breeds (European and Asian taurines, and African indicines). Consideration of breed frequencies of Msp I (-) allele in relation to breed type and their geographic origins, shows higher frequencies in humped breeds or Asian cattle breeds than in humpless or European breeds. This result indicates that the missense mutation can be contributed the functional significance such as the signal transduction through the receptor binding, also may be used as a marker for selection of the economic traits in Hanwoo.

Bovine Growth Hormone and Milk Fat Synthesis: from the Body to the Molecule - Review -

  • Kim, W.Y.;Ha, J.K.;Han, In K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.335-356
    • /
    • 1997
  • Injection of bovine growth hormone (bGH) to lactating dairy cows increases milk yield and yields of milk components including fat. It is generally believed that most of the anabolic effects derived from bGH in animal tissues are primarily mediated by IGF-1. IGF-1 is a strong anabolic peptide in the plasma of animals and exerts mitogenic and metabolic effects on target cells. Contrary to most protein hormones, the majority of IGF-1 in circulation is bound to the binding proteins (IGFBPs) which are known to be responsible for modifying the biological actions of IGF-1, thus making determinations of IGF-1 actions more difficult. On the other hand, fat is a major milk component and the greatest energy source in milk. Currently, the fat content of milk is one of the major criteria used in determining milk prices. It has been known that flavor and texture of dairy products are mainly affected by milk fat and its composition. Acetyl-CoA carboxylase (ACC) is the rate limiting enzyme which catalyzes the conversion of acetyl-CoA to malonyl-CoA for fatty acid synthesis in 1ipogenic tissues of animals including bovine lactating mammary glands. In addition to the short-tenn hormonal regulation of ACC by changes in the catalytic efficiency per enzyme molecule brought about by phosphorylation and dephosphorylation of the enzyme, the long-term hormonal regulation of ACC by changes in the number of enzyme molecules plays an essential role in control of ACC and lipogenesis. Insulin, at supraphysiological concentrations, binds to IGF-1 receptors, thereby mimicking the biological effects of IGF-1. The receptors for insulin and IGF-1 share structural and functional homology. Furthermore, epidermal growth factor increased ACC activity in rat hepatocytes and adipocytes. Therefore, it can be assumed that IGF-1 mediating bGH action may increase milk fat production by stimulation ACC with phosphorylation (short term) and/or increasing amounts of the enzyme proteins (long term). Consequently, the main purpose of this paper is to give the readers not only the galactopoietic effects of bGH, but also the insight of bGH action with regard to stimulating milk fat synthesis from the whole body to the molecular levels.