• Title/Summary/Keyword: Bovine Fibroblasts

Search Result 75, Processing Time 0.019 seconds

12-Oxoeicosatetraenoic acid, a candidate signal for placenta separation, activates matrix metalloproteinase and induces apoptosis in bovine trophoblast cells

  • Hachiro Kamada
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.429-440
    • /
    • 2023
  • Objective: 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid (12-KETE), a metabolite of arachidonic acid, is a strong candidate signal for placenta separation following calf discharge at delivery. In the present study, the effects of 12-KETE on bovine trophoblast cells were investigated to determine its function in the placentome at delivery. Methods: Bovine trophoblast cells derived from blastocysts were used. They were cocultured with or without fibroblasts derived from bovine placentome and/or bovine uterine epithelial cells. 12-KETE was added to the culture medium. Results: Bovine trophoblast cells contained binucleate cells and strongly expressed caudal type homeobox 2 (CDX-2) genes. Addition of 12-KETE to the trophoblast cell colony without feeder cells or that on a fibroblast monolayer induced rapid exfoliation of the colony. After 12-KETE addition, trophoblast cells emitted strong fluorescence caused by the degradation of dye-quenched collagen, indicating that 12-KETE activated matrix metalloproteinase of the trophoblast cells. Exfoliated cell colonies were stained with YOPRO-1, but not propidium iodide (PI). Moreover, DNA fragmentation and Bcl-2 associated X protein (Bax) gene (apoptosis stimulator) upregulation were observed in exfoliated cells, indicating that 12- KETE induced trophoblast cell apoptosis. These results were consistent with previous in vivo observations; however, even a lower concentration of 12-KETE activated trophoblast protease. Meanwhile, fibroblasts derived from the bovine placentome converted arachidonic acid to 12-KETE. Conclusion: These observations indicate that 12-KETE may serve as a signal for placenta separation at delivery.

In Vitro Development of Interspecies Nuclear Transfer Embryos: Effects of Culture Systems

  • Roh Sangho
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.253-256
    • /
    • 2004
  • Porcine fibroblasts were transferred into enucleated bovine oocytes for the interspecies nuclear transfer (NT). After NT, the embryos were cultured in three different culture systems. The media used for the experiment were CR1aa and NCSU23. The culture systems used for the experiment were: 1. Culture in CR1aa for 7 days (CR). 2. Culture in CR1aa for 2 days and subsequently in NCSU23 for 5 days (CR-NC). 3. Culture in NCSU23 for 7 days (NC). Bovine (intraspecies) NT group was used as a control. The oocytes in bovine NT group were treated the same as interspecies NT embryos except using bovine fibroblasts as nuclear donors. Regardless of their nuclear origin (interspecies vs bovine), the embryos in CR (68.4% vs 77.2%) and CR-NC (67.8% vs 70.5%) showed better developmental competence to the 2-cell stage (p<0.05) than those in NC (41.0% vs 10.0%). Bovine NT embryos in CR-NC did not develop over the 4-cell stage after the medium replacement, while interspecies NT embryos in CR-NC continued to develop and could reach over the 8-cell stage (12.2%). Blastocysts were only found in bovine NT group (17.4%), but no blastocyst was found in interspecies NT group. This study suggests that the development of interspecies NT embryos mostly depends on their recipient cytoplasm during the culture in vitro.

Variation of Transcribed X-linked Genes in Bovine Embryos Cloned with Fibroblasts at Different Age and Cell Cycle

  • Jeon, Byeong-Gyun;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.175-183
    • /
    • 2011
  • The present study compared the developmental potential, telomerase activity and transcript levels of X-linked genes (ANT3, HPRT, MeCP2, RPS4X, XIAP, XIST and ZFX) in the bovine somatic cell nuclear transfer (SCNT) embryos derived from different age and cell cycle of female donor nucleus. In experiment 1, the fusion rate, cleavage rate to 2-cell stage, developmental rate to blastocyst stage, and the mean number of total and ICM cells was slightly increased in embryos cloned with fetal fibroblasts compared to those with adult fibroblasts, but there was no significantly (p<0.05) differences. Telomerase activity was also similar in blastocysts cloned with fetal and adult fibroblasts. Up-regulated RPS4X and down-regulated MeCP2, XIAP, and XIST transcript level were observed in blastocysts cloned with adult fibroblasts, compared to those with fetal fibroblasts. In experiment 2, the fusion rate, cleavage rate to 2-cell stage, developmental rate to blastocyst stage, and the mean number of total and ICM cells was significantly (p<0.05) increased in embryos cloned with fetal fibroblasts at early G1 phase of the cell cycle, compared to those of fetal fibroblasts at late G1 phase. DNMT1 transcript was observed to significantly (p<0.05) increased in the fetal fibroblasts at 3 hrs after trypsin treatment of confluent culture. Further, level of telomerase activity and transcribed X-linked genes was also significantly (p<0.05) higher in the early G1 SCNT blastocysts than those of late G1. The results imply that fetal fibroblasts at early G1 phase induces the enhanced developmental potential and up-regulated telomerase activity and X-linked gene, but aberrant transcript pattern of X-linked genes may be displayed in the SCNT embryos.

Knocking-in of the Human Thrombopoietin Gene on Beta-casein Locus in Bovine Fibroblasts

  • Chang, Mira;Lee, Jeong-Woong;Koo, Deog-Bon;Shin, Sang Tae;Han, Yong-Mahn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.806-813
    • /
    • 2010
  • Animal bioreactors have been regarded as alternative tools for the production of limited human therapeutic proteins. The mammary glands of cattle are optimal tissues to produce therapeutic proteins that cannot be produced in large amounts in traditional systems based on microorganisms and eukaryotic cells. In this study, two knock-in vectors, pBCTPOKI-6 and pBCTPOKI-10, which target the hTPO gene on the bovine beta-casein locus, were designed to develop cloned transgenic cattle. The pBCTPOKI-6 and pBCTPOKI-10 vectors expressed hTPO protein in culture medium at a concentration of 774 pg/ml and 1,867 pg/ml, respectively. Successfully, two targeted cell clones were obtained from the bovine fibroblasts transfected with the pBCTPOKI-6 vector. Cloned embryos reconstructed with the targeted nuclei showed a lower in vitro developmental competence than those with the wild-type nuclei. After transfer of the cloned embryos into recipients, 7 pregnancies were detected at 40 to 60 days of gestation, but failed to develop to term. The results are the first trial for targeting of a human gene on the bovine milk protein gene locus, providing the potential for a large-scale production of therapeutic proteins in the animal bioreactor system.

Production of transgenic cattle by somatic cell nuclear transfer (SCNT) with the human granulocyte colony-stimulation factor (hG-CSF)

  • Carvalho, Bruno P.;Cunha, Andrielle T.M.;Silva, Bianca D.M.;Sousa, Regivaldo V.;Leme, Ligiane O.;Dode, Margot A.N.;Melo, Eduardo O.
    • Journal of Animal Science and Technology
    • /
    • v.61 no.2
    • /
    • pp.61-68
    • /
    • 2019
  • The hG-CSF (human Granulocyte Colony-Stimulating Factor) is a growth and stimulation factor capable of inducing the proliferation of bone marrow cells, several types of leukocytes, among other hematopoietic tissue cells. hG-CSF is used in used to treat anomalies that reder a small number of circulating white blood cells, which may compromise the immune defenses of the affected person. For these reasons, the production of hG-CSF in a bioreactor system using the mammary gland of genetic modified animals is a possibility of adding value to the bovine genetic material and reducing the costs of hG-CSF production in pharmaceutical industry. In this study, we aimed the production of transgenic hG-CSF bovine through the lipofection of bovine primary fibroblasts with an hG-CSF expression cassette and cloning these fibroblasts by the somatic cell nuclear transfer (SCNT) technique. The bovine fibroblasts transfected with the hG-CSF cassette presented a stable insertion of this construct into their genome and were efficiently synchronized to G0/G1 cell cycle stage. The transgenic fibroblasts were cloned by SCNT and produced 103 transferred embryos and 2 pregnancies, one of which reached 7 months of gestation.

Comparisons of Development Potential in Bovine SCNT Embryos using Donor Cells treated with Different Demethylating Inhibitors

  • Jeon, Byeong-Gyun;Jeong, Gie-Joon;Rho, Gyu-Jin
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.229-237
    • /
    • 2015
  • To improve the developmental potential of bovine somatic cell nuclear transfer (SCNT) embryos, this study compared the developmental rates to blastocyst stage in the SCNT embryos using donor fibroblasts treated with 5-azacytidine (5AC) and S-adenosylhomocysteine (SAH) at different concentrations. Their reprogramming efficiency level was investigated with level of telomerase activity. Donor fibroblasts isolated from adult ear skin of a cow were exposed to 5AC and SAH at different concentrations during 2 passages. After nuclear transfer into enucleated recipient oocytes, the cleavage and developmental rates were significantly (p<0.05) decreased in the SCNT embryos using 5AC-treated fibroblasts (5AC-SCNT embryos), compared with those of non-treated control (control-SCNT embryos) and SAH-treated fibroblasts (SAH-SCNT embryos). The developmental rates to blastocyst stage tended to be slightly increased in the SAH-SCNT embryos at each of the concentrations, and especially, the developmental rates in the SCNT embryos using 1.0 mM SAH-treated fibroblasts were significantly (p<0.05) higher than that of control SCNT embryos. The mean numbers of total and ICM cell in blastocysts were also significantly (p<0.05) decreased in the 5AC-SCNT embryos, compared with those of other SCNT blastocysts. Further, the level of telomerase activity was also significantly (p<0.05) decreased in the 5AC-SCNT embryos than those of control and SAH-SCNT embryos. Whereas, a significantly (p<0.05) up-regulated telomerase activity was observed in SAH-SCNT embryos, compare with that of control-SCNT embryos. In conclusion, SCNT embryos using hypomethylated donor cells with SAH, not 5AC, may improve the developmental potential and reprogramming efficiency.

Production of Cloned Embryos by Nuclei Transfer and Electronic Cell Fusion from Bovine Fetal Fibroblasts (Bovine Fetal Fibroblasts를 이용한 핵이식 및 세포융합에 관한 연구)

  • 이병천;박종임;조종기;김기연;신수정;용환율;황우석
    • Journal of Embryo Transfer
    • /
    • v.14 no.2
    • /
    • pp.107-111
    • /
    • 1999
  • The present study was performed to evaluate the best electric fusion condition in nuclear transfer, Korean Native Cattle fibroblasts were used as nucleic donors. Oocytes from slaughterhouse were matured in vitro for 22 h and enucleated. Each individual cells were transferred into enucleated ocytes and reconstructed embryo were placed into the fusion chamber. In experiment 1, pulse were performed by altering pulse duration at 1. 75kv/cm, 1 time. When pulse duration is 30$mutextrm{s}$, fusion and development rates is higher than other conditions. In experiment 2, the effect of different pulse number were studied at the pulse duration 30$mutextrm{s}$ and the same pulse intensity. When pulse number was one, fusion rates were higher than other conditions. The fused embryos were moved to culture medium and assessed their development to blastocyst. These results showed that best fusion condition was 30$mutextrm{s}$ and one time. And the fibroblasts derived from Han Woo can be reprogrammed by nuclear transplantation and develop subsequently in vitro.

  • PDF

Establishment of an Efficient System for the Production of Transgenic Somatic Cell Nuclear Transfer Embryos

  • Cho, J.K.;Bhuiyan, M.M.U.;Jang, G.;Park, E.S.;Chang, K.H.;Park, H.J.;Lim, J.M.;Kang, S.K.;Lee, B.C.;Hwang, W.S.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.75-75
    • /
    • 2002
  • The present study was conducted for the production of transgenic cloned cows by somatic cell nuclear transfer (SCNT) that secrete human prourokinase into milk. To establish an efficient production system for bovine transgenic SCNT embryos, the offset was examined of various conditions of donor cells including cell type, size, and passage number on the developmental competence of transgenic SCNT embryos. An expression plasmid far human prourokinase (pbeta-ProU) was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human prourokinase target gene into a pcDNA3 plasmid. Three types of bovine somatic cells including two adult cells (cumulus cells and ear fibroblasts) and fetal fibroblasts were prepared and transfected using a lipid-meidated method. In Experiment 1, developmental competence and rates of GFP expression in bovine transgenic SCNT embryos reconstructed with cumulus cells were significantly higher than those from fetal and ear fibroblasts. In Experiment 2, the effect of cellular senescence in early (2 to 4) and late (8 to 12) passages was investigated. No significant differences in the development of transgenic SCNT embryos were observed. In Experient 3, different sizes of GFP-expressing transfected cumulus cells [large (>30 ${\mu}{\textrm}{m}$) or small cell (<30 ${\mu}{\textrm}{m}$)] were used for SCNT. A significant improvement in embryo development and GFP expression was observed when small cumulus cells were used for SCNT. Taken together, these results demonstrate that (1) adult somatic cells could serve as donor cells in transgenic SCNT embryo production and cumulus cells with small size at early passage were the optimal cell type, and (2) transgenic SCNT embryos derived from adult somatic cells have embryonic development potential.

  • PDF

Differential Inheritance Modes of DNA Methylation between Euchromatic and Heterochromatic DNA Sequences in Ageing Fetal Bovine Fibroblasts

  • Y.K. Kang;D.B. Koo;Park, J.S.;Park, Y.H.;Lee, K.K.;Y.M. Han
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.49-49
    • /
    • 2001
  • To elucidate overall changes in DNA methylation that occurs by inappropriate epigenetic control during ageing, we compared fetal bovine fibroblasts and their aged neomycin-resistant versions using bisulfite-PCR technology. Reduction in DNA methylation was observed in euchromatic repeats (18S-rRNA/art2) and promoter regions of sing1e-copy genes (the cytokeratin/-lactoglobulin/interleukin-13 genes). Contrastingly, a stable maintenance of DNA methylation was revealed in various heterochromatic sequences (satellite I/IIalphoid and Bov-B). The differential inheritance modes of DNA methylation was confirmed through the analysis of individual neomycin-resistant clones. These global, multi-loci analyses provide evidence on the tendency of differential epigenetic modification between genomic DNA regions during ageing.

  • PDF

Development of Dermal Equivalent Using Mouse Fibroblasts (세포조직배양법을 이용한 쥐 인공피부의 개발)

  • Yang, Eun-Kyoung;Lee, Jae-Ho;Choe, Tae-Boo;Park, Jung-Keug
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.381-391
    • /
    • 1993
  • As the first stage of development of an artificial skin, fibroblasts were cultured in the collagen matrices to make a living dermal equivalent. Mouse embryonic fibroblasts were incorporated into a collagen matrices on plastic dishes containing concentrated DMEM culture media supplemented with sodium bicarbonate, hepes, antibiotics and fetal bovine serum. As the growth stimulation components, glycosaminoglycans were added: hyaluronic acid, chondroitin sulfate, heparin, chitosan were incorporated into the media at a concentration of either 1% or 5% w/w/ to collagen in order to investigate the effect on development of dermal equivalent. After the few days of incubation, gel matrics were contracted and firm dermal equivalent were formed. And the keratinocytes were cultured on top of dermal equivalent and make a three dimensional artificial skin tissue.

  • PDF