• Title/Summary/Keyword: Boussinesq equations

Search Result 84, Processing Time 0.024 seconds

Numerical study on the performance of semicircular and rectangular submerged breakwaters

  • Barzegar, Mohammad;Palaniappan, D.
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-226
    • /
    • 2020
  • A systematic numerical comparative study of the performance of semicircular and rectangular submerged breakwaters interacting with solitary waves is the basis of this paper. To accomplish this task, Nwogu's extended Boussinesq model equations are employed to simulate the interaction of the wave with breakwaters. The finite difference technique has been used to discretize the spatial terms while a fourth-order predictor-corrector method is employed for time discretization in our numerical model. The proposed computational scheme uses a staggered-grid system where the first-order spatial derivatives have been discretized with fourth-order accuracy. For validation purposes, five test cases are considered and numerical results have been successfully compared with the existing analytical and experimental results. The performances of the rectangular and semicircular breakwaters have been examined in terms of the wave reflection, transmission, and dissipation coefficients (RTD coefficients) denoted by KR, KT, KD. The latter coefficient KD emerges due to the non-energy conserving KR and KT. Our computational results and graphical illustrations show that the rectangular breakwater has higher reflection coefficients than semicircular breakwater for a fixed crest height, but as the wave height increases, the two reflection coefficients approach each other. un the other hand, the rectangular breakwater has larger dissipation coefficients compared to that of the semicircular breakwater and the difference between them increases as the height of the crest increases. However, the transmission coefficient for the semicircular breakwater is greater than that of the rectangular breakwater and the difference in their transmission coefficients increases with the crest height. Quantitatively, for rectangular breakwaters the reflection coefficients KR are 5-15% higher while the diffusion coefficients KD are 3-23% higher than that for the semicircular breakwaters, respectively. The transmission coefficients KT for rectangular breakwater shows the better performance up to 2.47% than that for the semicircular breakwaters. Based on our computational results, one may conclude that the rectangular breakwater has a better overall performance than the semicircular breakwater. Although the model equations are non-dissipative, the non-energy conserving transmission and reflection coefficients due to wave-breakwater interactions lead to dissipation type contribution.

Investigation of the U-shape submerged breakwater performance by the finite-different scheme

  • Barzegar, Mohammad
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • The submerged U-shape breakwater interaction with the solitary wave is simulated by the Boussinesq equations using the finite-difference scheme. The wave reflection, transmission, and dissipation (RTD) coefficients are used to investigate the U-shape breakwater's performance for different crest width, Lc1, and indent breakwater height, du. The results show that the submerged breakwater performance for a set of U-shape breakwater with the same cross-section area is related to the length of submerged breakwater crest, Lc1, and the distance between the crests, Lc2 (or the height of du). The breakwater has the maximum performance when the crest length is larger, and at the same time, the distance between them increases. Changing the Lc1 and du of the U-shape breakwaters result in a significant change in the RTD coefficients. Comparison of the U-shape breakwater, having the best performance, with the averaged RTD values shows that the transmission coefficients, Kt, has a better performance of up to 4% in comparison to other breakwaters. Also, the reflection coefficients KR and the diffusion coefficients, Kd shows a better performance of about 30% and 55% on average, respectively. However, the model governing equations are non-dissipative. The non-energy conserving of the transmission and reflection coefficients due to wave and breakwater interaction results in dissipation type contribution. The U-shape breakwater with the best performance is compared with the rectangular breakwater with the same cross-section area to investigate the economic advantages of the U-shape breakwater. The transmission coefficients, Kt, of the U-shape breakwater shows a better performance of 5% higher than the rectangular one. The reflection coefficient, KR, is 60% lower for U-shape in comparison to rectangular one; however, the diffusion coefficients, Kd, of U-shape breakwater is 35% higher than the rectangular breakwater. Therefore, we could say that the U-shape breakwater has a better performance than the rectangular one.

Modified Scheme for Tsunami Propagation with Variable Water Depths

  • Ha, Tae-Min;Seo, Kyu-Hak;Kim, Ji-Hun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.471-476
    • /
    • 2011
  • In this study, a modified dispersion-correction scheme describing tsunami propagation on variable water depths is proposed by introducing additional terms to the previous numerical scheme. The governing equations used in previous tsunami propagation models are slightly modified to consider the effects of a bottom slope. The numerical dispersion of the proposed model replaces the physical dispersion of the governing equations. Then, the modified scheme is employed to simulate tsunami propagation on variable water depths and numerical results are compared with those of the previous tsunami propagation model.

Onset of Buoyancy-Driven Convection in a Fluid-Saturated Porous Layer Bounded by Semi-infinite Coaxial Cylinders

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.723-729
    • /
    • 2019
  • A theoretical analysis was conducted of convective instability driven by buoyancy forces under transient temperature fields in an annular porous medium bounded by coaxial vertical cylinders. Darcy's law and Boussinesq approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the onset of buoyancy-driven motion. The linear stability equations are derived in a global domain, and then cast into in a self-similar domain. Using a spectral expansion method, the stability equations are reformed as a system of ordinary differential equations and solved analytically and numerically. The critical Darcy-Rayleigh number is founded as a function of the radius ratio. Also, the onset time and corresponding wavelength are obtained for the various cases. The critical time becomes smaller with increasing the Darcy-Rayleigh number and follows the asymptotic relation derived in the infinite horizontal porous layer.

Modeling on the North Pacific Ocean

  • Kwangwoo Cho;Yoon, Jong-Hwan;Park, Seog-Won
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.10a
    • /
    • pp.167-168
    • /
    • 2000
  • A North Pacific Ocean Model has been developed with the Global Ocean Model of the Meteorological Research Institute of Japan which solves the primitive equations with Boussinesq, rigid-lid, and hydrostatic assumptions. The objective of the study is to improve the description of the variability on the East Sea and northwestern Pacific Ocean. (omitted)

  • PDF

Generation of Long Water Waves by Moving Submerged Bodies (수중물체의 운동에 의한 장수파의 생성)

  • Seung-Joon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.55-61
    • /
    • 1987
  • The wave system due to a moving submerged body is investigated both theoretically and numerically. Boussinesq equation, which is derived under the assumption that the effects of nonlinearity and wave dispersion are of the same order, is generalized to take the forcing agency into account. Furthermore, under the more restrive assumption that the disturbance is of higher order, inhomogeneous Korteweg-de Vries equation is derived. These equations are solved numerically to obtain the generated wave system and the wave-making resistance. These results are compared with those given by the linear theory.

  • PDF

Active Dispersion-Correction Scheme of 2-D Finite Element Model for Simulation of Tsunami Propagation (지진해일 전파 수치모의를 위한 2차원 유한요소모형의 능동적 분산보정기법)

  • Yoon Sung Bum;Lim Chae Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • For the simulation of tsunami propagation an active dispersion-correction two-dimensional finite element model has been developed based on a shallow-water wave equation. This model employs an arbitrary triangular mesh and an explicit time integration scheme. However, the physical dispersion effects as included in the Boussinesq equations can be taken into account in the computation. The validity of the dispersion-correction scheme developed in this study is verified through the comparison of numerical solutions calculated using the new scheme with analytical ones considering dispersion effect of waves. As a result, the present model is shown to be considerably accurate.

The Prediction of Wave Groups within a Harbor to Assist Ship Operation at the Entrance

  • Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.125-130
    • /
    • 2006
  • Waves, which are the main source of ship motions in a seaway, considerably affect the performance of a ship. The study of waves and their impact on ship motions within harbors is an important aspect of the design and operation of harbors. The prediction of incoming groups of waves is particularly important for evaluating ship motion within a harbor. Such a prediction makes it possible to evaluate ship safety more accurately. The wave transformation model reported here is applied to actual ports based on Boussinesq wave equations both non-linear and dispersive wave processes be considered in order to capture physical effects such as wave shoaling, refractions, reflection and diffraction in variable depth environments. The prediction of incoming groups of waves is particularly important for evaluating ship motion within a harbor, Such a prediction makes it possible to evaluate ship safety more accurately and provide safe wave informations for navigation. Furthermore, a wave information support system is proposed for entering ships as one technique for improving the safety of ship operations. This system predicts the run of waves and reduces the danger by identifying the most dangerous point near the harbor entrance at the small wave groups.

Directional Wave Generation in the Navier-Stokes Equations Using the Internal Wave Maker (Navier-Stokes 방정식 모형의 경사지게 입사하는 파랑 내부조파)

  • Ha, Tae-Min;NamGung, Don;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.545-555
    • /
    • 2012
  • A numerical modeling has become increasingly popular and more important to the study of water waves with a rapid advancement of computer technology. However, different types of problems are induced during simulating wave motion. One of the key problems is re-reflection to a computation domain at the incident boundary. The internal wave generating-absorbing boundary conditions have been commonly used in numerical wave models to prevent re-reflection. For the Navier-Stokes equations model, the internal wave maker using a mass source function of the continuity equation has been used to generate various types of waves. Nonetheless, almost every numerical experiment is performed in two dimensions and only a few tests have been expanded to three dimensions. More recently, a momentum source function of the Boussinesq equations is applied to generate essentially directional waves in the three dimensional Navier-Stokes equations model. In this study, the internal wave maker using a momentum source function is employed to generate targeted linear waves in the three-dimensional LES model.

Simulation of buoyant turbulent flow in a stairwell (건물 계단통에서의 부력에 의한 난류유동 해석)

  • 명현국;진은주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.217-226
    • /
    • 1998
  • A numerical study has been carried out for two- and three-dimensional buoyant turbulent flow in a stairwell model. The Reynolds-averaged Navier-Stokes and energy equations are solved with the authors'own computer program. Two models by the Boussinesq approximation and the density-gradient form are used for buoyancy terms in the governing equations. Two- and three-dimensional predictions of the velocity and temperature fields are presented and the results are compared with experimental data. Comparisons have also been made in detail with two-dimensional predictions. Two-dimensional and three-dimensional simulations have predicted the overall features of the flow satisfactorily. A better agreement with experiment is achieved with three-dimensional simulations.

  • PDF