• Title/Summary/Keyword: Boussinesq 모델

Search Result 32, Processing Time 0.016 seconds

Validation of a CFD Analysis Model for the Calculation of CANDU6 Moderator Temperature Distribution (CANDU6 감속재 온도분포 계산을 위한 CFD 해석모델의 타당성 검토)

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.499-504
    • /
    • 2001
  • A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory(SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard $k-\varepsilon$ turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than $2.0^{\circ}C$ over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well.

  • PDF

Characteristic of Wave Diffraction and Reflection for Irregular Waves in SWASH Model Around Small Port Structures (소규모 항만 구조물 주변에서 불규칙파에 대한 SWASH 모형의 반사 및 회절)

  • Kwon, Kyong Hwan;Park, Chang Wook;Park, Il Heum;Kim, Jong Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.468-477
    • /
    • 2019
  • The numerical model of Boussinesq approximation, which is mainly used for evaluating the port calmness due to the irregular waves, has a limit of applicability of lattice size in ports such as marinas with narrow port openings of around 30m. The SWASH model controls the partial reflection according to the depth, porosity coefficient and structure size when applying the reflected wave incident on the structure and terrain. In this study, the partial reflection evaluation at the front of the structure according to the bottom shape and the shape of the structure are examined. In order to evaluate the reproducibility of the model due to the diffraction waves entering the term, the area of incidence at right angles and inclination of the structure is constructed and compared with the diffraction theory suggested by Goda et al. (1978). The experimental results of the sectional structure reflectances calculated as the depth mean show reflectances similar to the approximate values of the reflectances presented by Stelling and Ahrens (1981). It is considered that the reflected wave is well reproduced according to the control of the reflected wave at the boundary and the shape and topography of the structure. Compared with previous studies to examine the diffraction of the wave incident from the breakwater opening, the wave incidence angle and the shape of the diffraction wave are very similar to the theoretical values, but both oblique and rectangular incidence In the case where the direction concentration is small, the diffraction degree is underestimated in some sections with the crest ratio of 0.5 to 0.6.