• Title/Summary/Keyword: Bounding Space

Search Result 75, Processing Time 0.024 seconds

YOLOv4 Grid Cell Shift Algorithm for Detecting the Vehicle at Parking Lot (노상 주차 차량 탐지를 위한 YOLOv4 그리드 셀 조정 알고리즘)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.31-40
    • /
    • 2022
  • YOLOv4 can be used for detecting parking vehicles in order to check a vehicle in out-door parking space. YOLOv4 has 9 anchor boxes in each of 13x13 grid cells for detecting a bounding box of object. Because anchor boxes are allocated based on each cell, there can be existed small observational error for detecting real objects due to the distance between neighboring cells. In this paper, we proposed YOLOv4 grid cell shift algorithm for improving the out-door parking vehicle detection accuracy. In order to get more chance for trying to object detection by reducing the errors between anchor boxes and real objects, grid cells over image can be shifted to vertical, horizontal or diagonal directions after YOLOv4 basic detection process. The experimental results show that a combined algorithm of a custom trained YOLOv4 and a cell shift algorithm has 96.6% detection accuracy compare to 94.6% of a custom trained YOLOv4 only for out door parking vehicle images.

Design and Implementation of Trajectory Preservation Indices for Location Based Query Processing (위치 기반 질의 처리를 위한 궤적 보존 색인의 설계 및 구현)

  • Lim, Duk-Sung;Hong, Bong-Hee
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.67-78
    • /
    • 2008
  • With the rapid development of wireless communication and mobile equipment, many applications for location-based services have been emerging. Moving objects such as vehicles and ships change their positions over time. Moving objects have their moving path, called the trajectory, because they move continuously. To monitor the trajectory of moving objects in a large scale database system, an efficient Indexing scheme to processed queries related to trajectories is required. In this paper, we focus on the issues of minimizing the dead space of index structures. The Minimum Bounding Boxes (MBBs) of non-leaf nodes in trajectory-preserving indexing schemes have large amounts of dead space since trajectory preservation is achieved at the sacrifice of the spatial locality of trajectories. In this thesis, we propose entry relocating techniques to reduce dead space and overlaps in non-leaf nodes. we present performance studies that compare the proposed index schemes with the TB-tree and the R*-tree under a varying set of spatio-temporal queries.

  • PDF

Design Support Based on 3D-CAD System using functional Space Surrounding Design Object (설계대상물의 외부공간을 이용한 3차원 CAD 시스템에 의한 설계지원)

  • Nahm, Yoon-Eui;Ishikawa, Haruo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.102-110
    • /
    • 2009
  • Concurrent Engineering(CE) has presented new possibilities for successful product development by incorporating various product life-cycle functions from the earlier stage of design. In the product design, geometric representation is vital not only in its traditional role as a means of communicating design information but also in its role as a means of externalizing designer's thought process by visualizing the design product. During the last dozens of years, there has been extraordinary development of computer-aided tools intended to generate, present or communicate 3D models. However, there has not been comparable progress in the development of 3D-CAD systems intended to represent and manipulate a variety of product life-cycle information in a consistent manner. This paper proposes a novel concept, Minus Volume (MV), to incorporate various design information relevant to product lift-cycle functions. MV is a functional shape that is extracted from a design object within a bounding box. A prototype 3D-CAD system is implemented based on the MV concept and illustrated with the successful implementation of concurrent design and manufacturing.

VA-Tree : An Efficient Multi-Dimensional Index Structure for Large Data Set (VA-Tree : 대용량 데이터를 위한 효율적인 다차원 색인구조)

  • 송석일;이석희;조기형;유재수
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.753-768
    • /
    • 2003
  • In this paper, we propose a multi-dimensional index structure, tailed a VA(Vector Approximate)-tree that is constructed with vector approximates of multi-dimensional feature vectors. To save storage space for index structures, the VA-tree employs vector approximation concepts of VA-file that presents feature vectors with much smaller number of bits than original value. Since the VA-tree is a tree structure, it does not suffer from performance degradation owing to the increase of data. Also, even though the VA-tree is MBR(Minimum Bounding Region) based tree structure like a R-tree, its split algorithm never allows overlap between MBRs. We show through various experiments that our proposed VA-tree is a suitable index structure for large amount of multi-dimensional data.

  • PDF

A Performance Study on the TPR*-Tree (TPR*-트리의 성능 분석에 관한 연구)

  • Kim, Sang-Wook;Jang, Min-Hee;Lim, Seung-Hwan
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.1 s.16
    • /
    • pp.17-25
    • /
    • 2006
  • TPR*-tree is the most widely-used index structure for effectively predicting the future positions of moving objects. The TPR*-tree, however, has the problem that both of the dead space in a bounding region and the overlap among hounding legions become larger as the prediction time in the future gets farther. This makes more nodes within the TPR*-tree accessed in query processing time, which incurs the performance degradation. In this paper, we examine the performance problem quantitatively with a series of experiments. First, we show how the performance deteriorates as a prediction time gets farther, and also show how the updates of positions of moving objects alleviates this problem. Our contribution would help provide Important clues to devise strategies improving the performance of TPR*-trees further.

  • PDF

Analysis of Viscoplastic Softening Behavior of Concrete under Displacement Control (변위제어하에서 콘크리트의 점소성 연화거동해석)

  • Kim, Sang-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.185-193
    • /
    • 1995
  • The softening behaviors of concrete have been the object of numerous experimental and numerical studies, because the load carrying capacity of cracked concrete structure is not zero. Numerical studies are devoted to the investigation of three-dimensional softening behaviors of concrete on the basis of a viscoplastic theory, which may be able to represent the effects of plasticity and also of rheology. In order to properly describe material behaviors corresponding to different stress levels, two surfaces in stress space are adopted; one is a yield surface, and the other is a failure or bounding surface. When a stress path reaches the failure surface, it is considered that the softening behaviors are initiated as micro-cracks coalesce and are simulated by assuming that the actual strain increments in the post-peak region are less than the equivalent viscoplastic strain increment. The experimental studies and the finite element analyses have been carried out under the displacement control. Numerically simulated results indicate that the model is able to predict the essential characteristics of concrete behaviors such as the non-linearity, stiffness degradation, different behaviors in tension and compression, and specially dilatation under uniaxial compression.

  • PDF

Non-rigid Image Registration using Constrained Optimization (Constrained 최적화 기법을 이용한 Non-rigid 영상 등록)

  • Kim Jeong tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1402-1413
    • /
    • 2004
  • In non-rigid image registration, the Jacobian determinant of the estimated deformation should be positive everywhere since physical deformations are always invertible. We propose a constrained optimization technique at ensures the positiveness of Jacobian determinant for cubic B-spline based deformation. We derived sufficient conditions for positive Jacobian determinant by bounding the differences of consecutive coefficients. The parameter set that satisfies the conditions is convex; it is the intersection of simple half spaces. We solve the optimization problem using a gradient projection method with Dykstra's cyclic projection algorithm. Analytical results, simulations and experimental results with inhale/exhale CT images with comparison to other methods are presented.

Higher order zig-zag plate theory for coupled thermo-electric-mechanical smart structures (열-기계-전기 하중 하에서의 지능 복합재 평판 고차이론)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.9-14
    • /
    • 2002
  • A higher order zig-zag plate theory is developed to accurately predict fully coupled mechanical, thermal, and electric behaviors. Both the in-plane displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in tern-is of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux. The numerical examples of coupled and uncoupled analysis demonstrate the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings combined.

A Mesh Partitioning Using Adaptive Vertex Clustering (적응형 정점 군집화를 이용한 메쉬 분할)

  • Kim, Dae-Young;Kim, Jong-Won;Lee, Hae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • In this paper, a new adaptive vertex clustering using a KD-tree is presented for 3D mesh partitioning. A vertex clustering is used to divide a huge 3D mesh into several partitions for various mesh processing. An octree-based clustering and K-means clustering are currently leading techniques. However, the octree-based methods practice uniform space divisions and so each partitioned mesh has non-uniformly distributed number of vertices and the difference in its size. The K-means clustering produces uniformly partitioned meshes but takes much time due to many repetitions and optimizations. Therefore, we propose to use a KD-tree to efficiently partition meshes with uniform number of vertices. The bounding box region of the given mesh is adaptively subdivided according to the number of vertices included and dynamically determined axis. As a result, the partitioned meshes have a property of compactness with uniformly distributed vertices.

  • PDF

Hierarchical Non-Rigid Registration by Bodily Tissue-based Segmentation : Application to the Visible Human Cross-sectional Color Images and CT Legs Images (조직 기반 계층적 non-rigid 정합: Visible Human 컬러 단면 영상과 CT 다리 영상에 적용)

  • Kim, Gye-Hyun;Lee, Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.259-266
    • /
    • 2003
  • Non-rigid registration between different modality images with shape deformation can be used to diagnosis and study for inter-patient image registration, longitudinal intra-patient registration, and registration between a patient image and an atlas image. This paper proposes a hierarchical registration method using bodily tissue based segmentation for registration between color images and CT images of the Visible Human leg areas. The cross-sectional color images and the axial CT images are segmented into three distinctive bodily tissue regions, respectively: fat, muscle, and bone. Each region is separately registered hierarchically. Bounding boxes containing bodily tissue regions in different modalities are initially registered. Then, boundaries of the regions are globally registered within range of searching space. Local boundary segments of the regions are further registered for non-rigid registration of the sampled boundary points. Non-rigid registration parameters for the un-sampled points are interpolated linearly. Such hierarchical approach enables the method to register images efficiently. Moreover, registration of visibly distinct bodily tissue regions provides accurate and robust result in region boundaries and inside the regions.