• Title/Summary/Keyword: Boundary-Layer Flow

Search Result 1,006, Processing Time 0.029 seconds

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

Origin of limestone conglomerates in the Choson Supergroup(Cambro-Ordovician), mid-east Korea

  • Kwon Y.K.;Chough S.K.;Choi D.K.;Lee D.J.
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.63-65
    • /
    • 2001
  • The Chosen Supergroup (Cambro-Ordovician), mid-east Korea consists mainly of shallow marine carbonates and contains a variety of limestone conglomerates. These conglomerates largely comprise oligomictic, rounded lime-mudstone clasts of various size and shape (equant, oval, discoidal, tabular, and irregular) and dolomitic shale matrices. Most clasts are characterized by jigsaw-fit (mosaic), disorganized, or edgewise fabric and autoclastic lithology. Each conglomerate layer is commonly interbedded with limestone-dolomitic shale couplets and occasionally underlain by fractured limestone layer, capped by calcareous shale. According to composition, characteristic sedimentary structures, and fabric, limestone conglomerates in the Hwajol, Tumugol, Makkol, and Mungok formations of Chosen Supergroup can be classified into 4 types: (1) disorganized polymictic conglomerate (Cd), (2) horizontally stratified polymictic conglomerate (Cs), (3) mosaic conglomerate (Cm), and (4) disorganized/edgewise oligomictic conglomerate (Cd/e). These conglomerates are either depositional (Cd and Cs) or diagenetic (Cm and Cd/e) in origin. Depositional conglomerates are interpreted as storm deposits, tidal channel fills, or transgressive lag deposits. On the other hand, diagenetic conglomerates are not deposited by normal sedimentary processes, but formed by post-depositional diagenetic processes. Diagenetic conglomerates in the Chosen Supergroup are characterized by autoclastic and oligomictic lithology of lime-mudstone clasts, jigsaw-fit (mosaic) fabric, edgewise fabric, and a gradual transition from the underlying bed (Table 1). Autoclastic and oligomictic lithologies may be indicative of subsurface brecciation (fragmentation). Consolidation of lime-mudstone clasts pre-requisite for brecciation may result from dissolution and reprecipitation of CaCO3 by degradation of organic matter during burial. Jigsaw-fit fabric has been considered as evidence for in situ fragmentation. The edgewise fabric is most likely formed by expulsion of pore fluid during compaction. The lower boundary of intraformational conglomerates of depositional origin is commonly sharp and erosional. In contrast, diagenetic conglomerate layers mostly show a gradual transition from the underlying unit, which is indicative of progressive fragmentation upward (Fig. 1). The underlying fractured limestone layer also shows evidence for in situ fragmentation such as jigsaw-fit fabric and the same lithology as the overlying conglomerate layer (Fig, 1). Evidence from the conglomerate beds in the Chosen Supergroup suggests that diagenetic conglomerates are formed by in situ subsurface fragmentation of limestone layers and rounding of the fragments. In situ subsurface fragmentation may be primarily due to compaction, dewatering (upward-moving pore fluids), and dissolution, accompanying volume reduction. This process commonly occurs under the conditions of (1) alternating layers of carbonate-rich and carbonate-poor sediments and (B) early differential cementation of carbonate-rich layers. Differential cementation commonly takes place between alternating beds of carbonate-rich and clay-rich layers, because high carbonate content promotes cementation, whereas clay inhibits cementation. After deposition of alternating beds and differential cementation, with progressive burial, upward-moving pore fluid may raise pore-pressure in the upper part of limestone layers, due to commonly overlying impermeable shale layers (or beds). The high pore-pressure may reinforce propagation of fragmentation and cause upward-expulsion of pore fluid which probably produces edgewise fabric of tabular clasts. The fluidized flow then extends laterally, causing reorientation and further rounding of clasts. This process is analogous to that of autobrecciation, which can be analogously termed autoconglomeration. This is a fragmentation and rounding process whereby earlier semiconsolidated portions of limestone are incorporated into still fluid portions. The rounding may be due mainly to immiscibility and surface tension of lime-mud. The progressive rounding of the fragmented clasts probably results from grain attrition by fluidized flow. A synthetic study of limestone conglomerate beds in the Chosen Supergroup suggests that very small percent of the conglomerate layers are of depositional origin, whereas the rest, more than $80\%$, are of diagenetic origin. The common occurrence of diagenetic conglomerates warrants further study on limestone conglomerates elsewhere in the world.

  • PDF

The Characteristics of Physical Oceanographic Environments and Bottom Currents in the KODOS Study Area of the Northeastern Tropical Pacific (동태평양 KODOS 탐사해역에서의 물리해양환경 및 저층해류 특성)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul;Jeon, Dong-Chull;Kim, Ki-Hyune;Kwak, Chong-Heum;So, Seun-Seup
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.341-349
    • /
    • 2004
  • Hyrdography and deep currents were measured from 1997 to 1999 to investigate deep-sea environments in the KODOS (Korea Deep Ocean Study) area of the northeastern tropical Pacific. KODOS area is located meridionally from the North Equatorial Current to the boundary between the North Equatorial Current and the Equatorial Counter Current. Strong thermocline exists between 10 m and 120 m depths at the study area. Since that strong thermocline does hardly allow vertical mixing between surface and lower layer waters, vertical distributions of temperature, salinity, dissolved oxygen and nutrients drastically change near the thermocline. Salinity-minimum layer, which indicate the North Pacific Intermediate Water (NPIW) and the Antartic Intermediate Water (AAIW), vertically occupies vertically at the depths from 500 m down to 1400 m. The NPIW and the AAIW horizontally occur to the north and to the south of $7^{\circ}N$, respectively. The near-bottom water shows the physical characteristics of $1.05^{\circ}C$ and 34.70 psu at the depths of 10 m to 110 m above the bottom (approximately 4000-5000 m), which was originated from the Antarctic Circumpolar Water. It flows northeastwards for 2 to 4 months at the study area, and its mean velocity was 3.1-3.7 cm/s. Meanwhile, reverse (southwestward) currents appear for about 15 days with the average of 1.0-6.1 cm/s every 1 to 6 months. Dominant direction of the bottom currents obtained from the data for more than 6 months is northeastward with the average speeds of 1.7-2.1 cm/s. Therefore, it seems that deep waters from the Antarctica flow northwards passing through the KODOS area in the northeastern tropical Pacific.

The Marine Environment and Dinoflagellates Cysts in the Southwestern Sea of Korea (한국남서해역의 해양환경과 와편모조류 시스트 분포 특성)

  • Park, Jong-Sick;Yoon, Yang-Ho;Noh, Il-Hyeon;Soh, Ho-Young;Shin, Hyeon-Ho
    • ALGAE
    • /
    • v.23 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • A field survey for dinoflagellate cysts was carried out from May 2000 to November 2002 for the Southwest Sea of Korea. A total dinoflagellate cysts identified were 33 species, which belonged to 17 genera, 31 species, and 2 unidentified species. A cysts density were 16-1,501 cysts-gdry$^{-1}$. The dominant species of dinoflagellate cysts in the Southwestern Sea of Korea were Spiniferites bulloideus and Scrippsiella trochoidea, which are autotrophic species. To investigate the environmental characteristics of the Southwestern Sea of Korea using the dinoflagellate cysts, a principal component analysis (PCA) was conducted using the data collected from a total of 51 stations. From the score distribution map by the PCA, the Southwestern Sea of Korea was largely divided into three regions according to the first primary component and the second primary component. In other words, Group 1 was the western sea area of Mokpo and Jindo, Group 2 was the outer sea area of the South Sea, and Group 3 was the coastal areas of the South Sea around the Archipelago. It was found that this division of sea area was influenced by effects of the sea environment of the coastal areas of Korea. The coastal areas of Mokpo and Jindo that belong to Group 1 were affected by the cold Yellow Sea water. The outer sea area of the central parts of the South Sea that belong to Group 2, which is the boundary between the Southern coastal water of Korea and the Tsushima warm water, was subject to the formation of temperature fronts throughout the year, while Group 3 was affected by the coastal waters of Korea. It was also found that this division was in close relationship with the distribution of sediment facies in the bottom layer. From the above results, the environmental factors that influence the cyst distribution in he Southwestern Sea of Korea were found to include the eutrophication status of the sea area, the physical characteristics of the sea environment such as the flow of sea current and fronts, the sediment facies in the bottom layer, and the appearance volume of motile cells.

Conjugate Simulation of Heat Transfer and Ablation in a Small Rocket Nozzle (소형 시험모터의 노즐 열전달 및 삭마 통합해석)

  • Bae, Ji-Yeul;Kim, Taehwan;Kim, Ji Hyuk;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Ablative material in a rocket nozzle is exposed to high temperature combustion gas, thus undergoes complicated thermal/chemical change in terms of chemical destruction of surface and thermal decomposition of inner material. Therefore, method for conjugate analysis of thermal response inside carbon/phenolic material including rocket nozzle flow, surface chemical reaction and thermal decomposition is developed in this research. CFD is used to simulate flow field inside nozzle and conduction in the ablative material. A change in material density and a heat absorption caused by the thermal decomposition is considered in solid energy equation. And algebraic equation under boundary layer assumption is used to deduce reaction rate on the surface and resulting destruction of the surface. In order to test the developed method, small rocket nozzle is solved numerically. Although the ablation of nozzle throat is deduced to be higher than the experiment, shape change and temperature distribution inside material is well predicted. Error in temperature with experimental results in rapid heating region is found to be within 100 K.

Experimental Study on the Effect of the Area Ratio between Shaft and Tunnel and Heat Release Rate on the Plug-holing Phenomena in Shallow Underground Tunnels (저심도 도로터널에서 터널과 수직환기구의 단면적 비와 열방출률이 Plug-holing 현상에 미치는 영향에 관한 실험연구)

  • Hong, Kibea;Na, Junyoung;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.619-625
    • /
    • 2019
  • It is difficult to design because of the plug-holing phenomenon in which the amount of smoke discharged from the vertical vent is smaller than the designed amount of smoke. In this study, the effect of cross-sectional area ratio of tunnel and natural ventilation and heat release rate of fire source on plug-holing phenomenon occurring in natural ventilation system was experimentally analyzed. In the experiment model reduced to 1/20 size, the aspect ratio of the tunnel and the vertical vent was fixed, and the influence on the plug-holing phenomenon was confirmed by varying the sectional area ratio of the tunnel and the vertical vent. Experimental results show that the plug-holing phenomenon is caused by the comparison of the smoke boundary layer temperature with the temperature in the vertical vents, and the flow and temperature distribution characteristics under the vertical vents are changed as the cross-sectional area ratio of the tunnel and vertical vents increases. The plug-holing phenomenon is affected by the cross-sectional area ratio between the tunnel and the vertical ventilation. The greater the cross-sectional area ratio, the greater the probability of plug-holing.

Numerical Analysis of Modified Seabed Topography Due to the Presence of Breakwaters of Varying Reflection Characteristics using Physics-based Morphology Model [SeoulFoam] (방파제 형식에 따른 반사율 변화가 해저지형에 미치는 영향 수치해석: 물리기반 지형모형 SeoulFoam을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.168-178
    • /
    • 2021
  • Numerical simulations were implemented to look into the modified seabed topography due to the presence of breakwaters of varying reflection characteristics. The numerical model was composed of OlaFlow, an OpenFoam-based tool box, and a physics-based morphology model [Seoul Foam]. In doing so, the interaction between the seabed, which undergoes deformation due to siltation and scouring, and the incoming waves was described using Dynamic Mesh. The rubble-mound, vertical, and curved slit caisson breakwaters with varying reflection characteristics resulted in standing waves that differ from each other, shown to have a significant influence on the seabed topography. These results are in line with Nielsen's study (1993) that sands saltated under the surface nodes of standing waves, where the near-bed velocities are most substantial, convected toward the surface antinodes by boundary-layer drift. Moreover, the crest of sand waves was formed under the surface antinodes of standing waves, and the trough of sand waves was formed under the surface antinodes. In addition, sand wave amplitude reaches its peak in the curved slit caisson with a significant reflection coefficient, and the saltation of many grains of sand would cause this phenomenon due to the increased near-bed velocity under the nodes when the reflection coefficient is getting large.

Sediment Particulate Motions Over a Ripple Under Different Wave Amplitude Conditions (파랑에 의한 해저 사련 위에서의 유사입자의 거동 특성)

  • Chang, Yeon S.;Ahn, Kyungmo;Hwang, Jin H.;Park, Young-Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.374-385
    • /
    • 2013
  • Sediment particle motions have been numerically simulated over a sinusoidal ripple. Turbulent boundary layer flows are generated by Large Eddy Simulation, and the sediment particle motions are simulated using Lagrangian particle tracking method. Two unsteady flow conditions are used in the experiment by employing two different wave amplitudes while keeping other conditions such as wave period same. As expected, the amount of suspended sediment particles is clearly dependent on the wave amplitude as it is increasing with increasing flow intensity. However, it is also observed that the pattern of suspension may be different as well due to the only different condition caused by wave amplitude. Specially, the time of maximum sediment suspension within the wave period is not coincident between the two cases because sediment suspension is strongly affected by the existence of turbulent eddies that are formed at different times over the ripple between the two cases as well. The role of these turbulent eddies on sediment suspension is important as it is also confirmed in previous researches. However, it is also found the time of these eddies' formation may also dependent on the wave amplitude over rippled beds. Therefore, it has been proved that various flow as well as geometric conditions under waves has to be considered in order to have better understanding on the sediment suspension process over ripples. In addition, it is found that high turbulent energy and strong upward flow velocities occur during the time of eddy formation, which also supports high suspension rate at these time steps. The results indicate that the relationship between the structure of flows and bedforms has to be carefully examined in studying sediment suspension at coastal regions.

Experiments on Natural Convection on the Outer Surface of a Vertical Pipe by Using Fluids with High Pr Number (높은 Pr 수의 유체를 사용한 수직 원형관 외부의 자연대류 실험)

  • Kang, Gyeong-Uk;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • In this study, we investigated the natural convection on the outer surface of a vertical pipe by performing mass transfer experiments using fluids with high Pr number using the concept of analogy between heat and mass transfer. A cupric acid-copper sulfate electroplating system was adopted as the mass transfer system. Tests were performed for $Ra_H$ numbers from $1.4{\times}10^9$ to $4{\times}10^{13}$, Pr numbers from 2,094 to 4,173, and diameters from 0.005 m to 0.035 m. The test results for laminar flow conditions were in good agreement with the correlations reported by King, Jakob and Linke, McAdam, and Bottemanne, and those for turbulent conditions with the correlations presented by Fouad for a vertical plate and also proved the dependence on Pr numbers. The obtained correlations were $Nu_H=0.55Ra^{0.25}_H$ for laminar and $Nu_H=0.12Ra^{0.28}_HPr^{0.1}$ for turbulent. The transition between laminar and turbulent occurs at $Ra_H$ of about $10^{12}$.

Study on the Viscous Roll Damping around Circular Cylinder Using Forced Oscillations (강제동요를 이용한 원형실린더 점성 롤댐핑 연구)

  • Yang, Seung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.71-76
    • /
    • 2017
  • The roll damping problem in the design of ships and offshore structures remains a challenge to many researchers due to the fluid viscosity and nonlinearity of the phenomenon itself. In this paper, the study on viscous roll damping of a circular cylinder was carried out using forced oscillations. The roll moment generated by forced oscillation using a torque sensor was measured for each forced oscillation period and compared with the empirical formula. Although the magnitude of the measured torque from the shear force was relatively small, the results were qualitatively similar to those obtained from the empirical formula, and showed good agreement with the quantitative results in some oscillation periods. In addition, the flow around the circular cylinder wall was observed closely through the PIV measurements. Owing to the fluid viscosity, a boundary layer was formed near the wall of the circular cylinder, and a minute wave was generated by periodical forced oscillations at the free surface through the PIV measurement. In this study, the suitability of the empirical formula for the roll moment caused by viscous roll damping was verified by model tests. The wave making phenomenon due to the fluid viscosity around the wall of a circular cylinder was testified by PIV measurements.