• Title/Summary/Keyword: Boundary-Layer Effect

Search Result 578, Processing Time 0.027 seconds

Unsteady laminar boundary layer over a heated circular cylinder started impulsively from rest (갑자기 출발하는 가열된 원통 주위의 비정상 충류경계층 유동에 관한 수치적 연구)

  • 김재수;장근식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.262-270
    • /
    • 1987
  • A numerical method is presented which can solve the unsteady momentum and thermal boundary layers, coupled through the agency of buoyancy force, over a heated circular cylinder impulsively started from rest. By linearizing the nonlinear finite difference equations without sacrificing accuracy, numerical solutions are obtained at each time step without iteration. To get rid of the requirement of excessive number of grid points in the region of reversed flow, special form of transformed variables are used, by which the computational boundary layer thickness is maintained almost constant. These numerical properties enable the method to easily handle the region of reversed flow and how the singularity develops in the interior of the boundary layer. In order to investigated the thermal effects on the skin friction, heat flux, displacement thickness and on the separation, we have successfully solved three different cases of the buoyancy parameter .alpha.(Gr/Re$^{2}$).

Study on Boundary Lubrication in the Sliding Bearing System under High Load and Speed (고하중과 고속 미끄럼 베어링 시스템의 경계윤활에 대한 연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.248-256
    • /
    • 1999
  • Many tribological components in automobile engine undergo high load and sliding speed with thin film thickness. The lubrication characteristics of the components are regarded as ether hydrodynamic lubrication or boundary lubrication, whereas in a working cycle they actually have both characteristics. Many modem engine lubricants have various additives for better performance which make boundary film formation even under hydrodynamic lubrication regime. Conventional Reynolds equation with the viewpoints of continuum mechanics concerns only bulk viscosity of lubricant, which means that its simulation does not give insights on boundary lubrication characteristics. However, many additives of modern engine lubricant provide mixed modes of boundary lubrication characteristics and hydrodynamic lubrication. Especially, high molecular weight polymeric viscosity index improvers form boundary film on the solid surface and cause non-Newtonian fluid effect of shear thinning. This study has performed the investigation about journal bearing system with the mixed concepts of boundary lubrication and hydrodynamic lubrication which happen concurrently in many engine components under the condition of viscosity index improver added.

Effect of Concentration Polarization on The Pervaporation of Aqueous Chlorinated-Organic Solution (유기염화물 수용액의 투과증발에 미치는 농도분극의 영향)

  • Cho, Min-Suk;Kim, Seung-Jai;Kim, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.698-703
    • /
    • 1998
  • The pervaporation experiments of aqueous solutions of trichloroethylene (TCE) and chlorobenzene (CB) through the silicone rubber (polydimethylsiloxane, PDMS) membrane were carried out and the effect of concentration polarization on the separation characteristics was investigated. The resistance-in-series model was used to explain the boundary layer resistance. It was clear that the concentration polarization phenomenon had a significant effect on the permeation behavior in the pervaporation separation of the trace organic chlorides from aqueous solutions. With the same membrane thickness, the permeation of TCE, which has a stronger affinity for the PDMS, appeared to be more influenced by the boundary layer resistance than that of CB. The effect of boundary layer resistance was reduced and the membrane resistance became dominant with increasing membrane thickness at a given hydrodynamic condition. The separation factor was increased to approach the intrinsic separation factor of the membrane with its thickness.

  • PDF

A GUIDE FOR NUMERICAL WIND TUNNEL ANALYSIS IN ORDER TO PREDICT WIND LOAD ON A BUILDING (건축물의 풍하중을 예측하기 위한 수치풍동기법)

  • Lee, Mung-Sung;Lee, June-Hee;Hur, Nahm-Keon;Choi, Chang-Koon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.5-9
    • /
    • 2010
  • A numerical wind tunnel simulation is performed in order to predict wind loads acting on a building. The aim of the present study is to suggest a guideline for the numerical wind tunnel analysis, which could provide more detail wind load distributions compared to the wind code and expensive wind tunnel experiments. To validate the present numerical simulation, wind-induced loads on a 6 m cube model is predicted. Atmospheric boundary layer is used as a inlet boundary condition. Various effect of numerical methods are investigated such as size of computational domain, grid density, turbulence model and discretization scheme. The appropriate procedure for the numerical wind tunnel analysis is suggested through the present study.

  • PDF

Vertical Change in Extinction and Atmospheric Particle Size in the Boundary Layers over Beijing: Balloon-borne Measurement

  • Chen, Bin;Shi, Guang-Yu;Yamada, Maromu;Zhang, Dai-Zhou;Hayashi, Masahiko;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.141-149
    • /
    • 2010
  • Aerosol size and number concentration were observed in the atmospheric boundary layer over Beijing (from near the ground to 1,200 m) on March 15 (a clear day) and 16 (a dusty day), 2005. The results were further compared with lidar measurements in order to understand the dependency of extinction on the particle size distribution and their vertical changes. The boundary layer atmosphere was composed of several sub-layers, and a dry air layer appeared between 400 and 1,000 m under the influence of dust event. In this dry air layer, the concentration of the fine-mode particles (diameter smaller than $1.0\;{\mu}m$) was slightly lower than the value on the clear day, while the concentration of coarse-mode particles (diameter larger than $1.0\;{\mu}m$) was remarkably higher than that on the clear day. This situation was attributed to the inflow of an air mass containing large amounts of Asian dust particles and a smaller amount of fine-mode particles. The results strongly suggest that the fine-mode particles affect light extinction even in the dusty atmosphere. However, quantitatively the relation between extinction and particle concentration is not satisfied under the dusty atmospheric conditions since laser beam attenuates in the atmosphere with high concentration of particles. Laser beam attenuation effect becomes larger in the relation between extinction and coarse particle content comparing the relation between extinction and fine particle content. To clarify this problem technically, future in situ measurements such as balloon-borne lidar are suggested. Here extinction was measured at 532 nm wavelength. Measurements of extinction at other wavelengths are desired in the future.

An Experimental Study on Aerodynamic Performance of a Rotor-Blade Configuration under Cross-Wind Conditions (측풍 조건을 고려한 로터블레이드 형상의 공력성능에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • In the present study, a wind tunnel test for a rotor-blade configuration was conducted to investigate a basic aerodynamic performance and a effect of the cross wind. The diameter of the configuration was 1.46 m and the test was carried out for both a clean and a tripped configurations. The boundary layer for the trip configuration was simulated by zig-zag tape and the test performed on constant-velocity and constant-rotational modes. It was shown that the test result for the tripped configuration reduces the maximum power coefficient by 9.4% ~ 12.1% compared to the clean one. Within $5^{\circ}$ of the flow angle, there is no significant loss of power, however, the coefficient is reduced by 5.3% ~ 36.7% in the range of $10^{\circ}{\sim}30^{\circ}$.

Validation of Numerical Model for the Wind Flow over Real Terrain (실지형을 지나는 대기유동에 대한 수치모델의 검증)

  • Kim, Hyeon-Gu;Lee, Jeong-Muk;No, Yu-Jeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

CYLINDRICAL MIXING LAYER MODEL IN STELLAR JET (항성 제트의 원통형 혼합층 모델)

  • Choe, Seung-Eon;Yu, Gyeong-Hui
    • Publications of The Korean Astronomical Society
    • /
    • v.9 no.1
    • /
    • pp.21-38
    • /
    • 1994
  • We have developed a cylindrical mixing layer model of a stellar jet including cooling effect in order to understand an optical emission mechanism along collimated high velocity stellar jets associated with young stellar objects. The cylindrical results have been calculated to be the same as the 2D ones presented by Canto & Raga(1991) because the entrainment efficiency in our cylindrical model has been obtained to be the same value as the 2D model has given. We have discussed the morphological and physical characteristics of the mixing layers by the cooling effect. As the jet Mach number increases, the initial temperature of the mixing layer goes high because the kinetic energy of the jet partly converts to the thermal energy of the mixing layer. The initial cooling of the mixing layer is very severe, changing its outer boundary radius. A subsequent change becomes adiabatic. The number of the Mach disks in the stellar jet and the total radiative luminosity of the mixing layer, based on our cylindrical calculation, have quite agreed with the observations.

  • PDF

Compressible Boundary Layer Stability Analysis With Parabolized Stability Equations

  • Bing, Gao;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.110-119
    • /
    • 2006
  • An accurate and cost efficient method PSE is used for the stability analysis of 2D or 3D compressible boundary layers. A highly accurate finite difference PSE code has been developed at a general curvilinear coordinate system using an implicit marching procedure to deal with a broad range of transition predictions problems. Evolution of disturbances in compressible flat plate boundary layers are studied for free-stream Mach numbers ranging from 0 to 1.5. The effect of mean-flow nonparallelism is found to be weak on two dimensional waves and strong on three dimensional waves. The maximum amplification rate increases monotonically with Mach number. The present PSE solutions are compared with previous numerical investigations and experimental results and are found to be in good agreement.

  • PDF