• Title/Summary/Keyword: Boundary-Layer Effect

Search Result 576, Processing Time 0.024 seconds

Effect of Boundary Layer Thickness on the Flow Characteristics around a Rectangular Prism (직사각형 프리즘 주위의 유동특성에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.306-311
    • /
    • 2001
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer$(\delta=270mm)$ was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was $7.9{\times}10^3$. The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter.

  • PDF

Effect of Boundary Layer Thickness on the Flow Around a Rectangular Prism (직사각형 프리즘 주위의 유동구조에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun;Lee, Seung-Hong;Boo, Jeong-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.893-901
    • /
    • 2002
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670 mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer($\delta$=270 mm) was the natural turbulent boundary layer at the test section floor with fairly long developing length(18 m). The thin boundary layer($\delta$=36.5 mm) was generated on the smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity(3 ㎧) and the height of the model(40 mm) was 7.9$\times$10$^3$. The mean velocity vector fields and turbulent kinetic energy distributions were measured and compared. The effect of boundary layer thickness was clearly observed not only in the length of separation bubble but also in the location of reattachment point. The thinner the boundary layer thickness, the higher the turbulent kinetic energy Peak around the model roofbecame. It is strongly recommended that the height ratio between the model and the approaching boundary layer thickness should be encountered as a major parameter.

Effect Of The Separating Shear Layer on the Flow Over an Axisymmetric Backward-Facing Step (박리전단층이 축대칭 하향단흐름에 미치는 영향)

  • 부정숙;김경천;양종필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1102-1115
    • /
    • 1995
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purpose of the present study is to investigate the effect of the boundary layer thickness at the separation point on the reattachment length and to understand the structure of the recirculating flows. Local mean and fluctuating velocity components were measured in the separating and reattaching axisymmetric turbulent boundary layer over the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. The study demonstrated that the reattachment length increases with increasing boundary layer thickness. It was also observed that the reverse flow velocity and turbulent kinetic energy decrease with an increase in the momentum thickness at the separation point. The measured velocity field suggests that the boundary layer thickness at the separation can affect definitely on the formation of corner eddy.

Characteristics of Nocturnal Boundary Layer Observed in Kyungpook Province (경북지역에서 관측된 야간 대기경계층의 특성)

  • Byung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.329-336
    • /
    • 2001
  • Characgcteristics of nocturnal boundary layer(NBL) were analyzed by the upper-air observations data using with the airsonde and pilot balloons from 1994 to 1999 in Kyungpook province. The automate weather boundary layer can become stably stratified when the surface is cooler than the air. Stable nocturnal boundary layer height were estimated from the top of surface stable layer where the vertical gradient of temperature and mixing ratio tend to zero or negative. The depth of the stable nocturnal boundary layer depended largely on the thermal effect rather than the wind effect at nighttime. The NBL was more developed on the land than on the coastal region. The stability index (bulk Richardson number) showed that the NBL was stable when the wind was weak and the vertical gradient of the temperature was strong. The heat budget in the NBL was studied by considering the effect of the radiative and the cooled by both the longwave radiative flux and the divergence of the heat flux, while NBL under the cloudy sky the longwave radiative flux played a role of the warming. It was noted that the heat was not conserved in both cases. To complete the heat budget in the NBL the warming/cooling by advection and subsidence must be considered.

  • PDF

Experimental Study on Effects of Inlet Boundary Layer Thickness and Boundary Layer Fence in a Turbine Cascade (터빈 캐스케이드 입구경계층 두께와 경계층 펜스 효과에 대한 실험적 연구)

  • Jun, Y.M.;Chung, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.853-858
    • /
    • 2000
  • The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency. It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the fellowing research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the Passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than endwall loss so that it dominates secondary loss. In these cases the proper fence hight is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations.

  • PDF

Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

  • Zou, Chang-Fang;Wang, De-Yu;Cai, Zhong-Hua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.670-690
    • /
    • 2015
  • In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

Laboratory Experiment of Two-Layered Fluid in a Rotating Cylindrical Container (Simulation of polar Front) (원통형 이층유체의 회전반실험 (극전선 모의))

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • Rotating right cylinder of rigid sloping boundaries(top-bottom) is filled with two-layered fluid. External fluid which has the same density as the lower-layer is pumped through the rim boundary at the bottom, and this induces uniform vertical velocity in the interior that produces the Sverdrup type motion such as southward flowing western boundary current with northward interior horizontal motion. The rigid sloping upper boundary meets with lower layer to simulate so called "polar front", and the upper-layer motion influenced by the lower-layer flow has been observed. Barotropic motion in the western part of the basin while baroclinic motion in the eastern half is always present. In particular, both southward flowing eastern boundary flow and western boundary flow meets near the western wall and it induces northward western boundary flow to separate from the boundary With increased ${\beta}$-effect on the upper0layer the width of western boundary decreases and the separated western boundary flow moves into the interior to form an eddy-like motion. Baroclinic Rosebay wave clearly observed in the easter boundary slowly propagates to the west but it seems to be decayed before travelling to the western boundary. A local topograpic effect imposed on the lower-layer causes very sensitive response of upper layer boundary flows. In the east standing0wave0like features are observed in the west whereas the width of the boundary increases without any evidence of the separation of the western boundary flow.This may be due to the gact that even the lower-lauer barotropic motion feels the topography its influence does not propagate into the upper-layer. With large ${\beta}$-effect on the upper-layer,relatively large scale waves whose wavelengths are greater than the internal radius deformation exist in the interior.

  • PDF

Large eddy simulation of turbulent boundary layer effects on stratified fluids in a rotating conical container

  • Lee, Sang-Ki;Bae, Jun-Hong;Hwang, Eyl-Seon;M. Sadasivam
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.75-80
    • /
    • 2000
  • We revisit the arrested Ekman boundary layer problem, using a fully non-linear numerical model with the subgrid dissipation modeled by the large eddy simulation method (LES). The main objective of this study is to find out whether the dynamic balance of the arrested Ekman boundary layer explained by MacCready and Rhines (1991) is valid for high Reynolds number. The model solution indicates that for high Reynolds number and low Richardson number flows, the density anomaly diffusion by near-wall turbulent action may become intense enough to homogenize completely the density structure within the boundary layer, in the direction perpendicular to the sloping wall. Then the buoyancy effect becomes negligible allowing a near-equilibrium Ekman boundary layer flow to persist for a long period.

  • PDF

A Turbulent Bounbary Layer Effect of the De-Laval Nozzle on the Combustion Chamber Pressure (De-Laval 노즐의 난류 경계층 유동이 연소실 압력에 미치는 영향)

  • 장태호;이방업;배주찬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.635-644
    • /
    • 1986
  • A Compuressible turbulent boundary layer effect of the high temperature, accelerating gas flow through the De-Laval nozzle on combustion chamber pressure is numerically investigated. For this purpose, the coupled momentum integral equation and energy integral equation are solved by the Bartz method, and 1/7 power law for both the turbulent boundary layer velocity distribution and temperature distribution is assumed. As far as the boundary layer thicknesses are concerned, we can obtain reasonable solutions even if relatively simple approximations to the skin friction coefficient and stanton number have been used. The effects of nozzle wall cooling and/or mass flow rate on the boundary layer thicknesses and the combustion chamber pressure are studied. Specifically, negative displacement thickness is appeared as the ratio of the nozzle wall temperature to the stagnation temperature of the free stream decreases, and, consequently, it makes the combustion chamber pressure low.

Effect of Heat Treatments on the PTCR of $BaTiO_3$ Ceramics Doped by $Nb^{+5}$ ($Nb^{+5}$ Doped $BaTiO_3$ 계에서 열처리가 PTCR 현상에 미치는 영향)

  • 문영우;정형진;윤상옥
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.54-60
    • /
    • 1985
  • This study is concerned with the mechanism of PTCR in $BaTiO_3$ ceramics doped by $Nb^{+5}$ Since the vacancy compensation layer at the grain boundary of n-type doped $BaTiO_3$ ceramics has been known as a major factor for surface state to give PTCR phenomena the dependence of PTCR on such vacancy compensation layer was attemped to be confirmed experimentally in this study. For the experiment quenching and annealing at various temperature after sintering were adopted to induce difference in the thickness of vacancycompensation layer so as to exihibit difference of PTCReffect eachother. The TEX>$Ba^{++}$ cocentration at the grain and grain boundary was measured by EDAX to confirm the formation of the vacancy compensation layer. It was found that i)either decrease in the temperature for quenching ii) or increase in the temperature for annealing improves the PTCR effect clearly iii)increase in TEX>$Ba^{++}$ concentration at the grain boundary results in the improvement of PTCR effect. It was concluded that all the experimental results gave the evidence for the dependence of PTCR effect on the vacancy compensation layer at the grain boundary which had been induced possibly by the $Ba^{++}$ diffusion by the heat treatment conducted.

  • PDF