• Title/Summary/Keyword: Boundary layer method

Search Result 888, Processing Time 0.027 seconds

Measurement of Wall Shear Stress in Transitional Boundary Layer on a Flat Plate Using Computational Preston Tube Method (CPM을 이용한 평판위 천이경계층에서 벽 마찰응력의 계측)

  • 전우평;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.240-250
    • /
    • 1995
  • A CPM (computational preston tube method) was developed to measure wall shear stress in a transitional boundary layer on a flat plate using Preston tubes. Correlation for the displacement factor of Preston tubes was improved for a CPM to be used in the transitional boundary layer. The distribution of skin-friction coefficient was reasonably predicted in the uniform free stream of 3.1% turbulence intensity. Reasonable and accurate estimation of displacement factor of Preston tubes was found to be of crucial importance for the CPM, especially in the laminar boundary layer. The mean velocity profiles of the boundary layer on the plate were also measured and presented.

Generation of inflow turbulent boundary layer for LES computation

  • Kondo, K.;Tsuchiya, M.;Mochida, A.;Murakami, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.209-226
    • /
    • 2002
  • When predicting unsteady flow and pressure fields around a structure in a turbulent boundary layer by Large Eddy Simulation (LES), velocity fluctuations of turbulence (inflow turbulence), which reproduce statistical characteristics of the turbulent boundary layer, must be given at the inflow boundary. However, research has just started on development of a method for generating inflow turbulence that satisfies the prescribed turbulence statistics, and many issues still remain to be resolved. In our previous study, we proposed a method for generating inflow turbulence and confirmed its applicability by LES of an isotropic turbulence. In this study, the generation method was applied to a turbulent boundary layer developed over a flat plate, and the reproducibility of turbulence statistics predicted by LES computation was examined. Statistical characteristics of a turbulent boundary layer developed over a flat plate were investigated by a wind tunnel test for modeling the cross-spectral density matrix for use as targets of inflow turbulence generation for LES computation. Furthermore, we investigated how the degree of correspondence of the cross-spectral density matrix of the generated inflow turbulence with the target cross-spectral density matrix estimated by the wind tunnel test influenced the LES results for the turbulent boundary layer. The results of this study confirmed that the reproduction of cross-spectra of the normal components of the inflow turbulence generation is very important in reproducing power spectra, spatial correlation and turbulence statistics of wind velocity in LES.

Application of Convolutional Perfectly Matched Layer Method to Numerical Elastic Modeling Using Rotated Staggered Grid (회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용)

  • Cho, Chang-Soo;Lee, Hee-Il
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.183-191
    • /
    • 2009
  • Finite difference method using not general SSG (standard staggered grid) but RSG (rotated staggered grid) was applied to simulation of elastic wave propagation. Special free surface boundary condition such as imaging method is needed in finite difference method using SSG in elastic wave propagation. But free surface boundary condition in finite difference method using RSG is easily solved with adding air layer or vacuum layer. Recently PML (Perfectly Matched layer) is widely used to eliminate artificial reflection waves from finite boundary because of its' greate efficiency. Absorbing ability of CPML (convolutional Perfectly Matched Layer) that is more efficient than that of PML and CPML that don't use splitting of wave equation that should be adapted to PML was applied to FDM using RSG in this study. Frequency absorbing characteristic and energy absorbing ability in CPML layer were investigated and CPML eliminated artificial boundary waves very effectively in FDM using RSG in being compared with that of Cerjan's absorbing method. CPML method also diminished amplitude of waves in boundary layer of solid-liquid model very well.

Calculation of three-dimensional boundary layer near the plane of symmetry of an automobile configuration (자동차 중앙대칭단면 부근의 3차원경계층 계산)

  • 최장섭;최도형;박승오
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.61-69
    • /
    • 1988
  • The finite-difference three-dimensional boundary layer procedure of Chang and Patel is modified and applied to solve the boundary layer development on the automobile surface. The inviscid pressure distribution needed to solve the boundary layer equations is obtained by using a low order panel method. The plane of symmetry boundary layer exhibits the strong streamline divergence up to the midbody and convergence thereafter. The streamline divergence in front of the windshield helps the boundary layer to overcome the sever adverse pressure gradient and avoid the separation. The relaxation of the pressure right after the top of the wind-shield, on the other hand, makes the overly thinned boundary layer to readjust and prompts the streamlines to converge into the symmetry plane before the external streamlines do. The three-dimensional characteristics are less apparent after the midbody and the boundary layer is similar to that of the two-dimensional flow. The results of the off-plane-of-symmetry boundary layer are also presented.

  • PDF

Experimental Study on Measuring the Intermittency in the Transitional Boundary Layer (천이경계층에서의 간헐도 측정에 관한 실험적 연구)

  • 임효재;안재용;백성구;정명균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • An experimental study was performed to investigate the turbulence intermittency measuring methods across the boundary layer in the transition region. A single type hot-wire probe was used to measure instantaneous streamwise velocities in laminar, transitional and turbulent boundary layer To estimate wall shear stresses on the flat plate, near wall mean velocities are applied to the principle of CPM. Distribution of intermittency factor is obtained by dual-slope method and compared to the results of four methods,$\'{u},\;\{U}$, TERA and M-TERA method. In these methods, M-TERA shows a good agreement in the near wall region. However, the result of M-TERA method shows that intermittency factor is underestimated in the outer part and outside of the boundary layer and the dimensional constant of M-TERA method should be changed appropriately depending on measuring point.

SOLUTION OF THE BOUNDARY LAYER EQUATION FOR A MAGNETOHYDRODYNAMIC FLOW OF A PERFECTLY CONDUCTING FLUID

  • ZAKARIA, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.63-73
    • /
    • 2002
  • The influence of unsteady boundary layer magnetohydrodynamic flow with thermal relaxation of perfectly conducting fluid, past a semi-infinite plate, is considered. The governing non linear partial differential equations are solved using the method of successive approximations. This method is used to obtain the solution for the unsteady boundary layer magnetohydrodynamic flow in the special form when the free stream velocity exponentially depends on time. The effects of Alfven velocity $\alpha$ on the velocity is discussed, and illustrated graphically for the problem.

  • PDF

A Prediction Method for Three-Dimensional Boundary Layers on Ship Forms at Zero Froude Number

  • Shin-Hyoung,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.2
    • /
    • pp.7-20
    • /
    • 1981
  • A method to predict the three-dimensional turbulent boundary layer on ship forms is introduced. The present differential method is in the scope of thin boundary layer theory and adopting the eddy-viscosity turbulence model. Two different numerical schemes are taken in this paper to handle the sign-changing cross-flows. The method is applied to predict the boundary layer development on real ship forms; SSPA Model 720($C_B$=0.675) and HSVA Tanker Model($C_B$=0.85). The results are qualitatively in good agreements with measurements except at the very stern. Therefore the method seems to be very promising if further developments are accomplished to handle the thick stern boundary layer effectively.

  • PDF

Influence of Upstream State on the Interacting Turbulent Boundary Layer (相互作용하는 亂流 境界層에 대한 上流狀態의 影響)

  • 이덕봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.277-284
    • /
    • 1986
  • A numerical procedure (integral method) for calculating the interacting turbulent boundary layer is set up. With this method, some free interactions with various upstream conditions are simulated in order to investigate the influence of upstream state on the interacting turbulent boundary layer. The results obtained by this numerical simulation can be summarized as follows; Free interaction of upstream unstabilized (or separated) turbulent boundary layer is subcritical regardless of its external Mach number, while free interaction of upstream stabilized turbulent boundary layer has two different characteristics (subcritical, supercritical) according to the external Mach number.

ANALYSIS OF TURBULENT BOUNDARY LAYER FLOWS USING A TIME MARCHING METHOD (시간 전진법을 이용한 난류 경계층 유동의 해석)

  • Gong, H.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • A 3-dimensional compressible turbulent boundary layer solver has been developed. A time marching method is used to integrate the turbulent boundary layer equations. While the direct integration of the boundary layer equations is performed for unseparated flow regions, the inverse integration is performed for separated flow regions. The program is verified for flows that have analytical solutions or other numerical results. The solver will be merged with an Euler solver for viscous-inviscid interaction.

Boundary Layer Flow Under a Sluice Gate (수직수문하의 경계층흐름)

  • 이정열
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.95-105
    • /
    • 1994
  • The boundary layer flow under a sluice gate is numerically solved by the random vortex sheet method combined with the vortex-in-cell method in a boundary-fitted coordinate system. The numerical solution shows that the boundary layer developed along the vertical sluice gate wall is the primary cause for the discrepancy in the contraction ratio between the laboratory experiments and inviscid theory; the bottom boundary layer plays much a smaller role in the discrepancy. By dimensional analysis it is concluded that the discrepancy is inversely proportional to the 3/4th power of the gate opening, as analyzed by Benjamin(1956). The results of the numerical simulation and dimensional analysis show a good agreement with experimental results obtained by Benjamin(1956).

  • PDF