• 제목/요약/키워드: Boundary distribution

Search Result 1,829, Processing Time 0.028 seconds

Photovoltaic Micro Converter Operated in Boundary Conduction Mode Interfaced with DC Distribution System

  • Seo, Gab-Su;Shin, Jong-Won;Cho, Bo-Hyung;Lee, Kyu-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.44-45
    • /
    • 2011
  • Research on photovoltaic (PV) generation is taking a lot of attention due to its infinity and environment-friendliness with decrease of price per PV cell. While central inverters connect group of PV modules to utility grid in which maximum power point tracking (MPPT) for each module is difficult, micro inverter is attached on each module so that MPPT for individual modules can be easily achieved. Moreover, energy generation and consumption efficiency can be much improved by employing direct current (DC) distribution system. In this paper, a digitally controlled PV micro converter interfacing PV to DC distribution system is proposed. Boundary conduction mode (BCM) is utilized to achieve zero voltage switching (ZVS) of active switch and eliminate reverse recovery problem of passive switch. A 120W prototype boost PV micro converter is implemented to verify the feasibility and experimental results show higher than 98% efficiency at peak power and 97.29% of European efficiency.

  • PDF

A Study on the Reduction of Viscous Frictional Force with Uniform Pressure Distribution in the Turbulent Boundary Layer (균일(均一) 압력(壓力) 분포(分布)에 의(依)한 난류(亂流) 경계층내(境界層內) 결성(結性) 마찰력(摩擦力)의 감소화(減小化)에 관한 연구(硏究))

  • Sung, Du-Nam;Kim, Si-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.1
    • /
    • pp.40-48
    • /
    • 1997
  • In this study, uniform pressure distribution with small hole on the surface of symmetric object were given to reduce the viscous frictional force. The results were as follows : 1. The velocity on upper stream were accelerated by uniform pressure distribution on symmetric objects for reducing the viscous frictional resistances. 2. The effects of the distributed small holes were reduced the viscous frictional resistances in down stream region more than upper stream due to the increasing pressure in reverse flow region. 3. The viscous skin friction on surface of symmetric objects with and without distributed small holes are effect in region of upper stream and much decreased in down stream region due to increasing of boundary layer thickness.

  • PDF

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

A Study on Cutting Mechanism and Heat Transfer Analysis in Laser Cutting Process (FDM을 이용한 레이저 절단 공정에서의 절단 메카니즘 및 절단폭의 해석)

  • 박준홍;한국찬;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2418-2425
    • /
    • 1993
  • A two-dimensional transient heat transfer model for reactive gas assisted laser cutting process with a moving Gaussian heat source is developed using a numerical finite difference technique. The kerf width, melting front shape and temperature distribution were calculated by using the boundary-fitted coordinate system to handle the ejection of workpiece material and heat input from reaction and evaporation. An analytical solution for cutting front movement was adopted and numerical simulation was performed to calculate the temperature distribution and melting front thickness. To calculate the moving velocity of cutting front, the normal distribution of the cutting gas velocity was used. The kerf width was revealed to be dependent on the cutting velocity, laser power and cutting gas velocity.

A Study on the Efficient Finite Element Technique using Geometrical Symmetry (형상의 대칭성을 이용한 효율적인 3차원 유한요소 해석 기법에 관한 연구)

  • Im, Chang-Hwan;Kim, Hong-Gyu;Lee, Seok-Hui;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.462-467
    • /
    • 2000
  • In general, when geometry and current distribution have a periodic or symmetric property, the analysis of a part model is sufficient to represent that of a whole model by using the periodic boundary condition. It is impossible, however, to apply the periodic boundary condition when the current distribution is not symmetric even if the geometry of the model is symmetric. In this paper, a novel technique to resolve this problem is proposed. Even when the geometry is symmetric and the current distribution is not, the proposed method enables that calculation time for a whole model is reduced to that for a part model. The proposed method is applied to a deflection yoke (DY), and validness and efficiency of the method are verified.

  • PDF

A Study on Buckling Load Characteristic of Songdo Convention Center with Initial Imperfection and Joint Rigidity (송도 컨벤션 센터의 초기형상불완전 및 절점강성에 따른 좌굴하중 특성에 관한 연구)

  • Moon, Hye-Su;An, Sang-Gil;Shon, Su-Deok;Lee, Dong-Woo;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.191-204
    • /
    • 2006
  • This paper investigate the optimum thickness distribution of plate structure with different essential boundary conditions in the fundamental natural frequency maximization problem. In this study, the fundamental natural frequency is considered as the objective function to be maximized and the initial volume of structures is used as the constraint function. The computer-aided geometric design (CAGD) such as Coon's patch representation is used to represent the thickness distribution of plates. A reliable degenerated shell finite element is adopted calculate the accurate fundamental natural frequency of the plates. Robust optimization algorithms implemented in the optimizer DoT are adopted to search optimum thickness values during the optimization iteration. Finally, the optimum thickness distribution with respect to different boundary condition

  • PDF

Analysis of Temperature Distribution of Solid and Gas in the Rotary Cooler (회전냉각기에서 고체와 가스의 온도분포해석)

  • 이만승;최주석;전철근
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.25-30
    • /
    • 2002
  • Heat transfer occurring in the rotary cooler was analyzed by applying a one-dimensional steady state. The temperature of inlet gas and the measured temperature of outlet gas were used as boundary conditions. Axial temperature distribution of solid, gas and wall were calculated by solving two differential equations and two algebraic equations under the constraint of two point boundary conditions and operating conditions. The temperatures of outer wall calculated in this study were in good agreement with those measured from running rotary cooler.

Distribution and Exposure Characteristics of Pneumoconiosis Patients in Fuel Complexes (연료단지 진폐증 환자 분포현황 및 노출특성)

  • Jong-Hyeon Jung
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.161-168
    • /
    • 2024
  • This study was conducted to identify the pollutants generated by the fuel complex and to determine the health effects of the surrounding residents. In addition, based on the results of epidemiological surveys and health impact surveys of local residents, we analyze the distribution of patient groups and exposure characteristics according to the distance from the fuel complex boundary. Samples were collected from the briquette plant within the fuel complex and analyzed by SEM-EDXA, X-ray Fluorescence Spectrometer, and ICP. In addition, the distribution of patients and exposure characteristics were analyzed according to the distance from the fuel complex and yard boundaries. Analysis of briquette samples from the fuel complex showed that the average particle size was 10-30 ㎛, the shape was irregular, and SiO2 accounted for more than 50%. It is believed that silica, which causes pneumoconiosis, may have been scattered into the air. In particular, there was a large distribution of 5 ㎛ particles that affect respiratory diseases. According to the analysis of the residential addresses and distribution of pneumoconiosis cases, many pneumoconiosis cases were located in the area between 200 and 500 meters from the boundary of the fuel complex. In addition, 28 pneumoconiosis cases were identified as a result of the epidemiological survey and health impact survey at the fuel complex. In detail, there were 8 cases of occupational pneumoconiosis, 6 cases of environmental pneumoconiosis, and 14 cases of occupational and environmental pneumoconiosis. The confirmed pneumoconiosis cases were located between 0.3 and 1.1 kilometers from the fuel complex. It was found that environmental pollutants generated by the fuel complex adversely affect the health of local residents. In particular, there are many cases of pneumoconiosis in the area between 200 and 500 meters from the boundary of the fuel complex, and this distance is considered to be the direct and indirect impact zone of the briquette plant.

The Experimental Study of the Interaction Between the Flow rind Temperature Field and a Boundary Layer Due to a Variety of tole Height of a Vortex Generator (와동 발생기 높이 변화에 대한 경계층 내의 유동장과 온도장에 관한 실험적 연구)

  • Gwon, Su-In;Yang, Jang-Sik;Lee, Gi-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.82-93
    • /
    • 2002
  • The effects of the interaction between the flow and temperature field and a boundary layer due to a variety of the height of a vortex generator are experimentally investigated. The test facility consists of a boundary-layer wind tunnel with the vortex generator protruding from the bottom surface. In order to control the strength of the longitudinal vortices, the angle of attack and the spacing distance of the vortex generator are 20 degree and 40 mm, respectively. The height of the vortex generator (H) is 15 mm, 20 mm and 30 mm and the cord length of it is 50 mm. Three-component mean velocity measurements are made using a 5-hole probe system and the surface temperature distribution is measured by the hue capturing method using thermochromatic liquid crystals. By using the method mentioned above, the following conclusions are obtained from the present experiment. The boundary layer is thinned in the downwash region where the strong downflow and the lateral outflow of the boundary layer fluid occur and thickened in the upwash re,3ion where the longitudinal vortex sweeps low momentum fluid away from the bottom surface. In case that the height of the vortex generator increases, the averaged circulation and the maximum vorticity of the vortex pair decrease. The contours of the non-dimensional temperature show the similar trends fur all the cases (H=15 mm, 20 mm and 30 mm). The peak augmentation of the distribution of the local non-dimensional temperature occurs in the downwash region near the point of minimum boundary-layer thickness.

A Numerical Model of EM field calculation using Absorbing Boundary Conditions (Absorbing Boundary Condition을 이용한 전자파 수치해석)

  • Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.78-81
    • /
    • 1990
  • The Engquist-Majdas second-order Absorbing Boundary Conditions (ABC) has been combined with the finite element formulation replacing the boundary integral equations in the hybrid finite-boundary element method (HEM). The method is applied to electromagnetic field radiation problems, especially to the microwave launcher, in order to verify the finite element formulation with the ABC's. The results with ABC are in good agreement with those of HEM. In order to see the applicability of the ABC, a simplified microwave oven utilizing ABC and an absorbing material are provided. The EM field distribution of the model is visualized. This method could be a useful analysis and design tool for EM field devices.

  • PDF