• Title/Summary/Keyword: Boundary collocation method

Search Result 62, Processing Time 0.015 seconds

Static and Dynamic Fracture Analysis for the Interface Crack of Isotropic-Orthotropic Bimaterial

  • Lee, Kwang-Ho;Arun Shukla;Venkitanarayanan Parameswaran;Vijaya Chalivendra;Hawong, Jae-Sug
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.165-174
    • /
    • 2002
  • In the present study, interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static cracks are greate. when ${\alpha}$: 90$^{\circ}$(fibers perpendicular to the interface) than when ${\alpha}$=0$^{\circ}$(fibers parallel to the interface), and those when ${\alpha}$=90$^{\circ}$are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating cracks are greater when ${\alpha}$=0$^{\circ}$ than ${\alpha}$=90$^{\circ}$. For the velocity ranges (0.1 < C/C$\sub$s1/<0.7) observed in this study, the complex dynamic stress intensity factor │K$\sub$D/│increases with crack speed c, however, the rate of increase of │K$\sub$D/│with crack speed is not as drastic as that reported for homogeneous materials.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF