• Title/Summary/Keyword: Boundary behavior

Search Result 1,684, Processing Time 0.027 seconds

Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

  • Guenot-Delahaie, Isabelle;Sercombe, Jerome;Helfer, Thomas;Goldbronn, Patrick;Federici, Eric;Jolu, Thomas Le;Parrot, Aurore;Delafoy, Christine;Bernaudat, Christian
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.268-279
    • /
    • 2018
  • The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs), power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs). As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on $PWR-UO_2$ fuel rods with advanced claddings such as M5(R) under "low pressure-low temperature" or "high pressure-high temperature" water coolant conditions. This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on $UO_2$-M5(R) fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE-starting from base irradiation conditions it itself computes-is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur. Areas of improvement are finally discussed with a view to simulating and analyzing further tests to be performed under prototypical PWR conditions within the CABRI International Program. M5(R) is a trademark or a registered trademark of AREVA NP in the USA or other countries.

A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress (과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구)

  • Choi Young-Tae;Lee Dae-Hyuck;Lee Hee-Suk;Kim Jin-A;Lee Du-Hwa;You Kwang-Ho;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.259-276
    • /
    • 2006
  • In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.

The heat transfer characteristics of viscoelastic non-newtonian fluids in the entrance region of circular tube flows (원형관속을 유동하는 점탄성 유체의 입구 영역 열전달 특성에 관한 연구)

  • 엄정섭;황태성;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1032-1043
    • /
    • 1989
  • The heat transfer characteristics of the drag reducing polymer solutions are investigated experimentally in the thermal entrance region of circular tube flows. Fluids used in experiments are the aqueous solutions of high molecular polymer, polyacrylamide Separan AP-273 and the range of polymer concentrations is from 20 to 1000 wppm. Two stainless steel tubes with inside diameter 8.5mm(L/D=712) and 10.3mm(L/D=1160) are used for the heat transfer flow loops. The flow loop is set up to measure friction factors and heat transfer coefficients of test sections in two different modes; the recirculating flow system and once-through flow system. The test tubes are heated directly by electricity to apply the constant heat flux boundary conditions to the wall. Three different types of adaptors are used to observe the effects of the upstream flow conditions of the heat transfer test sections. The viscosity and characteristic relaxation time of the test fluids circulating in the flow system are measured by the capillary tube viscometer and falling ball viscometer at regular time intervals. The installed adaptors exhibit slight effect on the entrance heat transfer of Newtonian fluid. However, no noticeable effects are observed for the entrance heat transfer of the drag reducing fluids. The order of magnitude of the thermal entrance lengths of the drag reducing fluids which follow the minimum friction asymptote is much longer than that of Newtonian fluids in turbulent flows. A new dimensionless parameter, the viscoelastic Graetz number, is defined and all the experimental data are recasted in terms of the viscoelastic Graetz number. The local Nusselt number of the viscoelastic fluids is represented as a function of flow behavior index n and the viscoelastic Graetz number. As degradation continues the viscosity and the characteristic relaxation time of the testing fluids decrease. Weissenberg number defined by the relaxation time and D/V appears to be a proper dimensionless parameter in describing degradation effects on heat transfer of the viscoelastic fluids.

A Preliminary Analysis on the Radiometric Difference Across the Level 1B Slot Images of GOCI-II (GOCI-II Level 1B 분할영상 간의 복사 편차에 대한 초기 분석)

  • Kim, Wonkook;Lim, Taehong;Ahn, Jae-hyun;Choi, Jong-kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1269-1279
    • /
    • 2021
  • Geostationary Ocean Color Imager II (GOCI-II), which are now operated successfully since its launch in 2020, acquires local area images with 12 Level 1B slot images that are sequentially acquired in a 3×4 grid pattern. The boundary areas between the adjacent slots are prone to discontinuity in radiance, which becomes even more clear in the following Level 2 data, and this warrants the precise analysis and correction before the distribution. This study evaluates the relative radiometric biases between the adjacent slots images, by exploiting the overlapped areas across the images. Although it is ideal to derive the statistics from humongous images, this preliminary analysis uses just the scenes acquired at a specific time to understand its general behavior in terms of bias and variance in radiance. Level 1B images of February 21st, 2021 (UTC03 = noon in local time) were selected for the analysis based on the cloud cover, and the radiance statistics were calculated only with the ocean pixels. The results showed that the relative bias is 0~1% in all bands but Band 1 (380 nm), while Band 1 exhibited a larger bias (1~2%). Except for the Band 1 in slot pairs aligned North-South, biases in all direction and in all bands turned out to have biases in the opposite direction that the sun elevation would have caused.

Analytical Study on Fatigue Behavior of Resilient Pad for Rail Fastening System (레일체결장치용 방진패드의 피로거동에 관한 해석적 연구)

  • Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.405-410
    • /
    • 2021
  • In this study, a finite element analysis was performed applying a nonlinear material model and fatigue load conditions to evaluate the service life and spring stiffness of the resilient pad for rail fastening system. As a result of the fatigue analysis, the rate of change in spring stiffness compared to the initial condition was about 16%, indicating that fatigue hardening occurred. As for the stress generated in the longitudinal direction of the resilient pad, the difference between the stress generated at the center and the edge was about 10 times or more. In addition, it was analyzed that the equivalent stress of the outer boundary was more than twice as large as that of the central part. Therefore, it was analyzed that the damage and deformation of the resilient pad are the corners of the resilient pad under actual service conditions. The fatigue life diagram of the resilient pad (S-N curve) was derived using the equivalent stress of the resilient pad according to the fatigue cycles. Using the fatigue life diagram of the resilient pad derived in this study, it is considered that it can be used to predict the fatigue life under the relevant conditions by calculating the equivalent stress of the resilient pad under various load conditions.

Identification of Failure Cause for Elastomeric Bearing in Bridge by Earthquakes (지진에 의한 교량의 탄성받침장치 손상 원인 규명)

  • Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, In-Tae;Kim, Jung Han;Jeong, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The seismic isolation system have been applied in order to protect the collapse of bridge by seismic load and the vertical load transmitted from the superstructure. However, the failure and damages of non-shrinkage mortar, isolator and wedge in total 12 bridge were reported by Pohang Earthquake. In this study, the damage mechanism and behavior characteristics of elastomeric bearing by an earthquake were evaluated to consider the seismic isolation system including non-shrinkage mortar and the seat concrete of pier. To discuss the effect of installed wedge and damage mode of elastomeric bearing, the compressive-shear tests were carried out. Also, the mechanical behaviors and damage mechanism for each component of elastomeric bearing were evaluated by using finite element analysis. From the test results, the cracks were created at boundary between non-shrinkage mortar and seismic isolator and the shear loads were rapidly increased after bump into wedge. The cause for damage mechanism of seismic isolation system was investigated by comparing stress distribution of anchor socket and non-shrinkage mortar depending on wedge during earthquake.

Analysis of Interface Problem using the MLS Difference Method with Interface Condition Embedment (계면경계조건이 매입된 이동최소제곱 차분법을 이용한 계면경계문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.215-222
    • /
    • 2019
  • The heat conduction problem with discontinuous material coefficients generally consists of the conservative equation, boundary condition, and interface condition, which should be additionally satisfied in the solution procedure. This feature often makes the development of new numerical schemes difficult as it induces a layered singularity in the solution fields; thus, a special approximation is required to capture the singular behavior. In addition to the approximation, the construction of a total system of equations is challenging. In this study, a wedge function is devised for enriching the approximation, and the interface condition itself is embedded in the moving least squares(MLS) derivative approximation to consistently satisfy the interface condition. The heat conduction problem is then discretized in a strong form using the developed derivative approximation, which is named as the interface immersed MLS difference method. This method is able to efficiently provide a numerical solution for such interface problems avoiding both numerical quadrature as well as extra difference equations related to the interface condition enforcement. Numerical experiments proved that the developed numerical method was highly accurate and computationally efficient at solving the heat conduction problem with interfacial jump as well as the problem with a geometrically induced interfacial singularity.

Characteristics of the Segregation Sedimentation for Dredged Soil Depending on Fines Content (세립분 함량에 따른 준설토의 분리 퇴적 특성)

  • Park, Minchul;Lee, Jongkyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.6
    • /
    • pp.25-34
    • /
    • 2011
  • Dredged and reclaimed ground in progress at the West Coast has a high content of coarse particles. There will be different behaviors depending on the location of outlet and engineering properties of soil when its ground is dredged by a pump. Therefore, the experiments were conducted that were manufactured about the chamber equipment of length 2,650mm, width 770mm, height 735mm, experimented step filling method and water content about 300%, 500% and 700% respectively with SM and ML samples in order to realize segregating sediment characteristics of dredged ground with changing much fine. With results of analysis, ML sample by higher initial water content was reached to the period of complete sedimentation and coefficient of sedimentation consolidation increased with increases of diffusion distance. SM samples showed behavior of coarse soil with diffusion distance 120cm, diffusion distance of more than 120cm showed a similar tendency with ML sample under the influence of fines. In ML sample, it could be also found that lower depth and the more increasing diffusion distance increase in percentage of sieve #200 but water content decreases. In SM sample, it could be also found that coarse soil was piled at near the diffusion distance zone but fine soil was piled at the far diffusion distance zone and prominent difference showed between percentage of sieve #200 and water content(%) by boundary point 120cm~160cm of both samples. Also, shear strength was expressed ML-maximum 2.97kPa, SM-maximum 10.2kPa with diffusion distance.

Third Parties' Reactions to Peer Abusive Supervision: An Examination of Current Research (비인격적 감독행위에 대한 제3자 반응 연구동향)

  • Kim, Moon Joung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.175-190
    • /
    • 2022
  • Abusive supervision occurs in a social context in which third-party observers react and interact with the abused victims and supervisors. Despite the importance of third-party observers' behavior in abusive supervision, research on abusive supervision has mainly focused on the dyadic relationship between direct victims and supervisors. Although in recent years research on third parties' reactions to peer abusive supervision has attracted growing attention, there are still insufficient studies examining the topic especially within domestic research in Korea. As such, this study comprehensively reviews empirical studies on third parties' reactions to peer abusive supervision and aims to broaden the scope of research in the field. Firstly, the results of previous studies show that the effects of observed peer abusive supervision are mediated by cognitive and affective processes. Secondly, previous studies are found to investigate the boundary conditions where the effects of observed peer abusive supervision can be amplified or mitigated with regard to various outcomes. Overall, compared to research on direct victims, research on third-party observers of abusive supervision is found to capture a wider spectrum of responses. In order to explain the mechanisms of this phenomena, this study thoroughly examines theoretical assumptions presented in previous studies and categorizes them into five theory types. Finally, this study identifies a couple of central methodological issues, including common method bias and inadequate model specification in the literature and suggests future research directions.

Effect of sintering temperature on microstructure and dielectric properties in (Dy, Mg)-doped BaTiO3 (Dy 및 Mg가 첨가된 BaTiO3에서 소결 온도가 미세구조와 유전특성에 미치는 영향)

  • Woo, Jong-Won;Kim, Sung-Hyun;Choi, Moon-Hee;Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.175-182
    • /
    • 2022
  • Rare-earth elements were doped with Mg to enhance the temperature stability of dielectric properties of BaTiO3 for its application to MLCC (Multi-Layer Ceramic Capacitor). The additives strongly affect both grain growth and densification behaviors during sintering, and hence dielectric properties. The additive effects therefore should be examined in each system with different additives. This study investigated the crystal structure, grain growth and densification behaviors and related variations in dielectric constant with respect to sintering temperature. Dielectric constant appears to be varied with grain size in a temperature range between 1200 and 1300℃, suggesting the importance of grain size control. The temperature dependence of grain size variation was well explained by an established theory correlating the grain growth behavior with grain boundary structure. This accordance provides a basis for sintering technique to control grain growth thus to improve dielectric constant in rare-earth doped BaTiO3.