• Title/Summary/Keyword: Boundary Noise

Search Result 947, Processing Time 0.028 seconds

A Suggestion of Method to reduce the Radiation Efficiency of Dash Panel of a Passenger Car (승용차 대시부의 구조 방사 효율 저감 방법 제안)

  • Kim, Young-Ki;Kang, Yeon-June;Ahn, Ok-Kyun;Ki, Ji-Hyeon;Choi, Yoon-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.268-272
    • /
    • 2002
  • A study to determine the structure-borne noise radiated by a dash panel of a real car is performed by using the finite element method (FEM) and the boundary element method (BEM). The radiation efficiency is used to estimate the structure-borne noise radiated by a dash panel. The curved surfaces of a dash panel change the radiation efficiency. Experimental results of radiation efficiency of a simple rectangular plate and a dash panel show good agreements with the simulation results.

  • PDF

Noise Reduction of a Blower for an Automatic Car Washer by Using Dissipative Silencers (흡음형 소음기를 사용한 세차기용 원심송풍기의 소음저감에 관한 연구)

  • Kim, Jae-Young;Lee, Il-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.726-732
    • /
    • 2011
  • Straight absorptive silencers have been designed to reduce the noise level of a centrifugal blower. Three-dimensional boundary element method is used for the design of absorptive silencers which consist of a perforated main pipe and a outer chamber filled with fibrous material. The experimental results show that the absorptive silencer reduces up to 8 dB(A) in the overall sound pressure level of the blower and up to 15 dB at the blade passing frequency. It is also found that the gap between the silencer and the impeller may substantially alter the acoustic performance of the silencers. The transmission loss predicted by the boundary element method follows overall trends of the measured insertion loss. The experiments also show that the impact of the silencers on the aerodynamic performance of the blower is minimum.

A Study for the Effect of Sound Absorbing Materials in the Tunnel (터널내의 흡음재 부착 효과 연구)

  • Park, Han-Lim;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.750-750
    • /
    • 2001
  • Todays, according to development of traffics, there are so many tunnels around us. Tunnels are used for trains, subway trains, cars, etc. Especially for subway, all of its routes are tunnels. So the noise of the subway train cannot radiated out of the station and the noise level in the station and train cabin is so high. There are some methods to reduce this noise and one of them is using absorbing materials. But the area of the tunnel and station is very large, so it is important to determine the effective position and amount of absorbing materials before attaching them. In this study, we studied the effect of sound absorbing materials in the tunnel using boundary element method. We applied BEM for general boundary conditions. With BEM calculations, we found the effect of absorbing materials and effective positions for the subway tunnel and station.

  • PDF

A Suggestion of Method to reduce the Radiation Efficiency of Dash Panel of a Passenger Car (승용차 대시부의 구조 방사 효율 저감 방법 제안)

  • Kim, Young-Ki;Kang, Yeon-June;Ahn, Ok-Kyun;Ki, Ji-Hyeon;Park, Yoon-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.332.1-332
    • /
    • 2002
  • The study was performed as reduction method using finite and boundary element analysis on structure-borne noise radiated by dash panel of a real car. The radiation efficiency is used to estimate sound noise of dash panel. Curvature and edges of dash panel have effect on radiation efficiency. The simulation results of dash panel was ensured by comparison between experimental results and simulation results of a simple rectangular plate. (omitted)

  • PDF

Numerical Investigation of the Cover-Plates Effects on the Rectangular Open Cavity (직사격형 공동에서 덮개 효과에 대한 수치적 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.457-464
    • /
    • 2001
  • The aeroacoustic phenomena in the simple rectangular open cavity are well published by many researchers. But the geometry shapes of aircraft landing gear wells, weapon bays, etc. are more complicate than that of the simple retangular cavity. They are more similar to the cavity having cover-plates at adges, or Helmholtz resonator. Therefore, the effects of cover-plates existing on edges of rectangular open cavity are numerically investigated in this paper. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions and buffer zone techniques are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoustic field. Results show that the cover-plates existing on edges of cavity reduce the noise convected from cavity, make the frequency of noise become higher, and change the directivity pattern. So these results can be used in the design of a low noise cavity.

  • PDF

Investigation of Flow Noise Source of Hull Mounted Sonar Dome (선저 소나돔의 유체소음원 특성 분석)

  • Shin, Ku-Kyun;Kang, Myengwhan;Yi, Jong-Ju;Seo, Youngsoo;Lee, Kyung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.575-576
    • /
    • 2014
  • The Hull Mounted Sonar Dome housing the sonar sensor array is a ship's structure protruded from ship bottom, which is under turbulent flow. The flow of sonar surface is highly disturbed and turbulent. In this case the wall pressure fluctuations within the turbulent boundary layer are one of the most important flow induced self noise sources of the SONAR system. We investigate the characteristics of the wall pressure fluctuations of the hull mounted sonar dome through the model test in the cavitation tunnel. This paper contains the wall pressure fluctuation spectra at various free stream velocities.

  • PDF

Structural Modification for the Reduction of Radiation Noise of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 방사소음 저감을 위한 구조변경)

  • Song, Min-Keun;Oh, Ki-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.439-447
    • /
    • 2008
  • One of the key elements in efforts to minimize noise radiation from a powertrain is the knowledge of the main radiating component and the relation between the surface vibration of a powertrain and the sound pressure. In this research, the powertrain model is developed based on FEM(finite element method). This model is applied to the prediction of the vibration of a powertrain by using ADAMS and the radiation noise by using BEM(boundary element method). According to this numerical analysis, the surface vibration of a powertrain is investigated as a source of radiated noise. This surface vibration is caused by the 1st order natural vibration of the cylinder block and its mode shape is the torsion mode. Therefore, this mode shape is modified to reduce the surface vibration of the powertrain. The radiation noise of the modified powertrain is also reduced to $5{\sim}12\;dB$. This modification is very successful for the noise reduction based on the CAE technology.

Efficient and accurate prediction of flat plate trailing edge noise using semi-analytic model for point pressure spectra (점 압력 스펙트럼에 대한 준-이론 모델을 사용한 효율적이고 정확한 평판 뒷전 소음의 예측)

  • Lee, Gwang-Se;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.45-54
    • /
    • 2012
  • In order to predict trailing edge noise from a flat plate more effectively and accurately, the prediction algorithm based on semi-analytic model for point pressure spectrum is proposed. The semi-analytic model consists of empirical models for point pressure spectra and theoretical model to determine the boundary layer characteristics needed for the empirical models. The proposed methods are applied to predict the trailing edge noise of the flat plate located in the mean flow of speed 38 m/s, for which the measured data are available. In present study, six empirical models for point pressure spectra are utilized for the predictions of trailing edge noise and their prediction results are compared to the measured data. Through the analysis of these comparisons, it is revealed that the present method based on non-frozen formula using Efimtsov model and Smol'yakov-Tkachenko model can provide more accurate and efficient predictions of trailing edge noise.

  • PDF

Efficient and Accurate Prediction of Flat Pate Trailing Edge Noise Using Semi-analytic Model for Point Pressure Spectra (점 압력 스펙트럼에 대한 준-이론 모델을 사용한 효율적이고 정확한 평판 뒷전 소음의 예측)

  • Lee, Gwang-Se;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.524-534
    • /
    • 2012
  • In order to predict trailing edge noise from a flat plate more effectively and accurately, the prediction algorithm based on semi-analytic model for point pressure spectrum is proposed. The semi-analytic model consists of empirical models for point pressure spectra and theoretical model to determine the boundary layer characteristics needed for the empirical models. The proposed methods are applied to predict the trailing edge noise of the flat plate located in the mean flow of speed 38 m/s, for which the measured data are available. In present study, six empirical models for point pressure spectra are utilized for the predictions of trailing edge noise and their prediction results are compared to the measured data. Through the analysis of these comparisons, it is revealed that the present method based on non-frozen formula using Efimtsov model and Smol'yakov-Tkachenko model can provide more accurate and efficient predictions of trailing edge noise.

Numerical Analysis of Rail Noise Regarding Surface Impedance of Ground by Using Wavenumber Domain Finite and Boundary Elements (지면 임피던스를 고려한 레일 방사 소음의 파수영역 유한요소/경계요소 해석)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.289-300
    • /
    • 2015
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In conventional approaches to predicting rail noise, the rail is regarded as placed in a free space so that the reflection from the ground is not included. However, in order to predict rail noise close to the rail, the effect of the ground should be contained in the analysis. In this study the rail noise reflected from the ground is investigated using the wavenumber domain finite element and boundary element methods. First, two rail models, one using rail attached to the rigid ground and one using rail located above rigid ground, are considered and examined to determine the rigid ground effect in terms of the radiation efficiency. From this analysis, it was found that the two models give considerably different results, so that the distance between the rail and the ground is an important factor. Second, an impedance condition was set for the ground and the effect of the ground impedance on the rail noise was evaluated for the two rail models.