• Title/Summary/Keyword: Boundary Modeling

Search Result 889, Processing Time 0.028 seconds

Development of a method for modeling arbitrarily shaped body (복합형상 모델링 기법의 개발)

  • 이강수;이건우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.567-572
    • /
    • 1988
  • As an efficient way of modeling bodies of complicated shapes, the sweeping and skinning operations have been implemented. These two operations are very powerful modeling method when the body is defined by the cross sections at various locations. For the implementation, the data structure for storing the cross sections and the resulting three dimensional body has been constructed. The resulting object is defined by the boundary representation based on the non-uniform nonperiodic B-spline surface.

  • PDF

Developing A Pre-and Post-Procellor for Building Analysis (건축구조해석을 위한 선후처리 프로그램의 개발)

  • 이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.31-43
    • /
    • 1994
  • General concepts and overall procedures of interactive graphical user interface, a preand post- processor, for building analysis are introduced. Attention is forcused on the data structures and the modeling operators which can ensure the intergrity of its database should have. An example of model building process is presented to illustrate its capability, its facilities for modifying, and for processing.

  • PDF

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

Development of Viscous Boundary Conditions in an Immersed Cartesian Grid Framework

  • Lee, Jae-Doo
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • Despite the high cost of memory and CPU time required to resolve the boundary layer, a viscous unstructured grid solver has many advantages over a structured grid solver such as the convenience in automated grid generation and vortex capturing by solution adaption. In present study, an unstructured Cartesian grid solver is developed on the basis of the existing Euler solver, NASCART-GT. Instead of cut-cell approach, immersed boundary approach is applied with ghost cell boundary condition, which can be easily applied to a moving grid solver. The standard $k-{\varepsilon}$ model by Launder and Spalding is employed for the turbulence modeling, and a new wall function approach is devised for the unstructured Cartesian grid solver. Developed approach is validated and the efficiency of the developed boundary condition is tested in 2-D flow field around a flat plate, NACA0012 airfoil, and axisymmetric hemispheroid.

Modeling of Boundary Layer using Atmospheric Boundary Layer Wind Tunnel of UCD (UCD 대기경계층 풍동을 이용한 경계층 형성)

  • White, Bruce R.;Kim, Bong-Hwan;Kim, Dae-Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.118-124
    • /
    • 2012
  • The simulation of the air flow over models in atmospheric boundary layer wind tunnel is a research region based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid dynamics in the proximity of the Earth's surface. In this study, the atmospheric boundary layer wind tunnel of UCD is used, the mean velocities are measured by augmentation devices such as roughness blocks and spires. The experimental results of mean velocity profile are well fitted with the value of power law.

Boolean Operation of Non-manifold Model with the Data Structure of Selective Storage (선택저장 자료구조를 이용한 복합다양체 모델의 불리언 작업)

  • 유병현;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.293-300
    • /
    • 2000
  • The non-manifold geometric modeling technique is to improve design process and to Integrate design, analysis, and manufacturing by handling mixture of wireframe model, surface model, and solid model in a single data structure. For the non-manifold geometric modeling, Euler operators and other high level modeling methods are necessary. Boolean operation is one of the representative modeling method for the non-manifold geometric modeling. This thesis studies Boolean operations of non-manifold model with the data structure of selective storage. The data structure of selective storage is improved non-manifold data structure in that existing non-manifold data structures using ordered topological representation method always store non-manifold information even if edges and vortices are in the manifold situation. To implement Boolean operations for non-manifold model, intersection algorithm for topological cells of three different dimensions, merging and selection algorithm for three dimensional model, and Open Inventor(tm), a 3D toolkit from SGI, are used.

  • PDF

Efficient flexible boundary algorithms for DEM simulations of biaxial and triaxial tests

  • Liu, Donghai;Yang, Jiaqi
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.189-206
    • /
    • 2020
  • The accurate modeling of boundary conditions is important in simulations of the discrete element method (DEM) and can affect the numerical results significantly. In conventional triaxial compression (CTC) tests, the specimens are wrapped by flexible membranes allowing to deform freely. To accurately model the boundary conditions of CTC, new flexible boundary algorithms for 2D and 3D DEM simulations are proposed. The new algorithms are computationally efficient and easy to implement. Moreover, both horizontal and vertical component of confining pressure are considered in the 2D and 3D algorithms, which can ensure that the directions of confining pressure are always perpendicular to the specimen surfaces. Furthermore, the boundaries are continuous and closed in the new algorithms, which can prevent the escape of particles from the specimens. The effectiveness of the proposed algorithms is validated by biaxial and triaxial simulations of granular materials. The results show that the algorithms allow the boundaries to deform non-uniformly on the premise of maintaining high control accuracy of confining pressure. Meanwhile, the influences of different lateral boundary conditions on the numerical results are discussed. It is indicated that the flexible boundary is more appropriate for the models with large strain or significant localization than rigid boundary.

Generation of inflow turbulent boundary layer for LES computation

  • Kondo, K.;Tsuchiya, M.;Mochida, A.;Murakami, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.209-226
    • /
    • 2002
  • When predicting unsteady flow and pressure fields around a structure in a turbulent boundary layer by Large Eddy Simulation (LES), velocity fluctuations of turbulence (inflow turbulence), which reproduce statistical characteristics of the turbulent boundary layer, must be given at the inflow boundary. However, research has just started on development of a method for generating inflow turbulence that satisfies the prescribed turbulence statistics, and many issues still remain to be resolved. In our previous study, we proposed a method for generating inflow turbulence and confirmed its applicability by LES of an isotropic turbulence. In this study, the generation method was applied to a turbulent boundary layer developed over a flat plate, and the reproducibility of turbulence statistics predicted by LES computation was examined. Statistical characteristics of a turbulent boundary layer developed over a flat plate were investigated by a wind tunnel test for modeling the cross-spectral density matrix for use as targets of inflow turbulence generation for LES computation. Furthermore, we investigated how the degree of correspondence of the cross-spectral density matrix of the generated inflow turbulence with the target cross-spectral density matrix estimated by the wind tunnel test influenced the LES results for the turbulent boundary layer. The results of this study confirmed that the reproduction of cross-spectra of the normal components of the inflow turbulence generation is very important in reproducing power spectra, spatial correlation and turbulence statistics of wind velocity in LES.

Image-Based Approach for Modeling 3D Shapes with Curved Surfaces (곡면을 포함하는 형상의 영상을 이용한 모델링)

  • Lee, Man-Hee;Park, In-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.38-48
    • /
    • 2007
  • In this paper, we propose an image-based method for modeling 3D objects with curved surfaces based on the NURBS (Non-Uniform Rational B-Splines) representation. Starting from a few calibrated images, the user specifies the corresponding curves by means of an interactive user interface. Then, the 3D curves are reconstructed using stereo reconstruction. In order to fit the curves easily using the interactive user interface, NURBS curves and surfaces are employed. The proposed surface modeling techniques include surface building methods such as bilinear surfaces, ruled surfaces, generalized cylinders, and surfaces of revolution. In addition to these methods, we also propose various advanced surface modeling techniques, including skinned surfaces, swept surfaces, and boundary patches. Based on these surface modeling techniques, it is possible to build various types of 3D shape models with textured curved surfaces without much effort. Also, it is possible to reconstruct more realistic surfaces by using proposed view-dependent texture acquisition algorithm. Constructed 3D shape model with curves and curved surfaces can be exported in VRML format, making it possible to be used in different 3D graphics softwares.

Evaluation of EFDC for the Simulations of Water Quality in Saemangeum Reservoir (새만금호 수질예측 모의를 위한 EFDC 모형의 평가)

  • Jeon, Ji Hye;Chung, Se Woong;Park, Hyung Seok;Jang, Jeong Ryeol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.445-460
    • /
    • 2011
  • The objective of this study was to construct and assess the applicability of the EFDC model for Saemangeum Reservoir as a 3D hydrodynamic and water quality modeling tool that is necessary for the effective management of water quality and establishment of conservation measures. The model grids for both reservoir system only and reservoir-ocean system were created using the most recent survey data to compare the effects of different downstream boundary conditions. The model was applied for the simulations of temperature, salinity, water quality variables including chemical oxygen demand (COD), chlorophyll-a (Chl-a), phosphorus and nitrogen species and algal biomass, and validated using the field data obtained in 2008. Although the model reasonably represented the temporal and spatial variations of the state variables in the reservoir with limited boundary forcing data, the salinity level was underestimated in the middle and upstream of the reservoir when the flow data were used at downstream boundaries; Sinsi and Garyuk Gates. In turn, the error caused to increase the bias of water quality simulations, and inaccurate simulation of density flow regime of river inflow during flood events. It is likely because of the loss of momentum of sea water intrusion at downstream boundaries. In contrast to flow boundary conditions, the mixing between sea water and freshwater was well reproduced when open water boundary condition was applied. Thus, it is required to improve the downstream boundary conditions that can accommodate the real operations of the sluice gates.