• Title/Summary/Keyword: Boundary Matching Algorithm

Search Result 94, Processing Time 0.017 seconds

Basic Study on Diffusion Branch of Tribrachial Flame with the Variation of Flammability Limits and Heat Loss Under Small Fuel Concentration Gradient (미소 농도구배 조건에서 열손실 및 가연한계가 삼지화염의 확산화염에 미치는 영향에 대한 기초 연구)

  • Cho, Sang-Moon;Lee, Min-Jung;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.505-513
    • /
    • 2010
  • The tribrachial flame has attracted interest as a basic structure of the flame edge. This flame structure helps understand stabilization of laminar flames and re-ignition of turbulent flames. A number of analytical and experimental studies have been carried out on the tribrachial flame. However, the effect of the variation of the flammability limits on the structure of the tribrachial flame has not been studied in detail. In this study, the effect of non-symmetric flammability limits on the flame structure was investigated by adopting a simple numerical scheme based on several laminar flame theories. A fixed velocity field was considered and boundary matching algorithm was used on the premixed branch. The variation of the diffusion branches under the non-symmetric flammability limits and heat loss was investigated. The formation and extinction of the diffusion branch behind the premixed branch were successfully described. This basic study can help understand the fundamental structure of the flame and can form the basis of subsequent detailed studies.

Motion Linearity-based Frame Rate Up Conversion Method (선형 움직임 기반 프레임률 향상 기법)

  • Kim, Donghyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.734-740
    • /
    • 2017
  • A frame rate up-conversion scheme is needed when moving pictures with a low frame rate is played on appliances with a high frame rate. Frame rate up-conversion methods interpolate the frame with two consecutive frames of the original source. This can be divided into the frame repetition method and motion estimation-based the frame interpolation one. Frame repetition has very low complexity, but it can yield jerky artifacts. The interpolation method based on a motion estimation and compensation can be divided into pixel or block interpolation methods. In the case of pixel interpolation, the interpolated frame was classified into four areas, which were interpolated using different methods. The block interpolation method has relatively low complexity, but it can yield blocking artifacts. The proposed method is the frame rate up-conversion method based on a block motion estimation and compensation using the linearity of motion. This method uses two previous frames and one next frame for motion estimation and compensation. The simulation results show that the proposed algorithm effectively enhances the objective quality, particularly in a high resolution image. In addition, the proposed method has similar or higher subjective quality than other conventional approaches.

High Performance Object Recognition with Application of the Size and Rotational Invariant Feature of the Fourier Descriptor to the 3D Information of Edges (푸리에 표현자의 크기와 회전 불변 특징을 에지에 대한 3차원 정보에 응용한 고효율의 물체 인식)

  • Wang, Shi;Chen, Hongxin;I, Jun-Ho;Lin, Haiping;Kim, Hyong-Suk;Kim, Jong-Man
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.170-178
    • /
    • 2008
  • A high performance object recognition algorithm using Fourier description of the 3D information of the objects is proposed. Object boundaries contain sufficient information for recognition in most of objects. However, it is not well utilized as the key solution of the object recognition since obtaining the accurate boundary information is not easy. Also, object boundaries vary highly depending on the size or orientation of object. The proposed object recognition algorithm is based on 1) the accurate object boundaries extracted from the 3D shape which is obtained by the laser scan device, and 2) reduction of the required database using the size and rotational invariant feature of the Fourier Descriptor. Such Fourier information is compared with the database and the recognition is done by selecting the best matching object. The experiments have been done on the rich database of MPEG 7 Part B.

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.