• Title/Summary/Keyword: Boundary Deformation of Grid

Search Result 26, Processing Time 0.025 seconds

A method Based on Boundary Deformation for Planar Grid Generation

  • Liu, Xinru;Liu, Duanfeng;Han, Xuli
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • This paper puts forward a method based on the boundary deformation for planar grid generation. Many methods start with the special properties of grid and switch to the solution of a direct optimization or a non-linear minimum cost flow. Though with high theoretical significance, it's hard to realize due to the extremely complicated computing process. This paper brings out the automatic generation of planar grid by studying the boundary deformational properties of planar grid, which leads to uniform grid and enjoys the simplicity of computation and realization.

A Volume Grid Deformation Code for Computational fluid Dynamics of Moving Boundary Problems (이동경계문제의 전산유체역학을 위한 체적격자변형코드)

  • Ko, Jin-Hwan;Kim, Jee-Woong;Byun, Do-Young;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1049-1055
    • /
    • 2008
  • Modern multidisciplinary computational fluid dynamics often incorporates moving boundaries, as would be required in the applications such as design optimization, aeroelasticity, or forced boundary motion. It is challenging to develop robust, efficient grid deformation algorithms when large displacement of the moving boundaries is required. In this paper, a volume grid deformation code is developed based on the finite macro-element and the transfinite Interpolation, and then interfaces to a structured multi-block Navier-Stokes in-house code. As demonstrated by an airfoil with pitching motion, the hysteresis loops of lift, drag and moment coefficients of the developed method are shown to be in good agreement with those of experimental data.

NUMERICAL SIMULATION ON FLUID-STRUCTURE INTERACTION OF A TWO-DIMENSIONAL ORBITING FLEXIBLE FOIL (선회하는 2차원 유연 날개의 유체-구조 상호작용 모사)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • The hybrid Cartesian/immersed boundary method is applied to simulate fluid-structure interaction of a two-dimensional orbiting flexible foil. The elastic deformation of the flexible foil is modelled based on the dynamic equation of a thin-plate. At each time step, the locations and velocities of the Lagrangian control points on the flexible foil are used to reconstruct the boundary conditions for the flow solver based on the hybrid staggered/non-staggered grid. To test the developed code, the flow fields around a flapping elliptical wing are calculated. The time history of the vertical force component and the evolution of the vorticity fields are compared with recent other computations and good agreement is achieved. For the orbiting flexible foil, the vorticity fields are compared with those of the case without the deformation. The combined effects of the angle of attack and the orbit on the deformation are investigated. The grid independency study is carried out for the computed time history of the deformation at the tip.

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park I. R.;Chun H. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid (적응격자계를 이용한 경계층의 확산제어천이 예측)

  • Cho J. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

COMPUTATIONS ON FLOW FIELDS AROUND A 3D FLAPPING PLATE USING THE HYBRID CARTESIAN/IMMERSED BOUNDARY METHOD (HCIB 법을 이용한 변형하는 평판 주위의 3차원 유동해석)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • A code is developed using the hybrid Cartesian/immersed boundary method and it is applied to simulate flows around a three-dimensional deforming body. A new criterion is suggested to distribute the immersed boundary nodes based on edges crossing a body boundary. Velocities are reconstructed at the immersed boundary nodes using the interpolation along a local normal line to the boundary. Reconstruction of the pressure at the immersed boundary node is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other experimental and numerical results for the velocity profiles around a circular cylinder under the forced in-line oscillation and the pressure coefficient distribution on a sphere. The code is applied to simulate the flow fields around a plate whose tail is periodically flapping under a translation. The effects of the velocity and acceleration due to the deformation on the periodic shedding of pairs of tip vortices are investigated.

Numerical Simulation of Flow Field Around a Rotating Flexible Foil Using the 3D HCIB Method (3차원 HCIB법을 이용한 회전하면서 변형하는 날개 주위 유동해석)

  • Shin, Sang-Mook;Nho, In-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.379-388
    • /
    • 2008
  • A hybrid Cartesian/immersed boundary code is expanded to simulate flow field around a three-dimensional body which undergoes large dynamic deformation. Immersed boundary nodes are automatically distributed based on the edges crossing triangles on body boundary. Velocity vectors are reconstructed at those immersed boundary nodes along local normal lines to the boundary. The reconstruction of pressure is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other results on laminar flow over a sphere. The code is applied to simulate flow around a foil which is attached to a body of revolution and rotates under periodic deformation. The periodic variation of the tip vortex is observed and the effects of the deformation on hydrodynamic force acting on the body are investigated.

Equivalent boundary conditions to analyze the realistic fatigue behaviors of a bridge RC slab

  • Khan, Arslan Q.;Deng, Pengru;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.369-383
    • /
    • 2022
  • In this study, an equivalent boundary conditions (BCs) determination method is developed numerically for a panel reinforced concrete (RC) slab to realistically analyze the deformation and fatigue behaviors of a bridge RC slab. For this purpose, a finite element analysis of a bridge RC slab is carried out beforehand to calculate the stiffness of the bridge RC slab, and then the equivalent BCs for the panel RC slab are determined to achieve the same stiffness at the BCs to the obtained stiffness of the bridge RC slab at the corresponding locations of the bridge RC slab. Moreover, for the simulation of fatigue behaviors, fatigue analysis of the panel RC slab is carried out employing a finite element method based on a numerical model that considers the bridging stress degradation. Both the determined equivalent BCs and the BCs that have been typically applied in past studies are employed. The analysis results confirm that, in contrast to the panel RC slab with typically used BCs, the panel RC slab with equivalent BCs simulate the same bending moment distribution and deformation behaviors of the bridge RC slab. Furthermore, the equivalent BCs reproduce the extensive grid crack pattern in the panel RC slab, which is alike the pattern normally witnessed in a bridge RC slab. Conclusively, the panel RC slab with equivalent BCs behaves identical to the bridge RC slab, and, as a result, it shows more realistic fatigue behaviors observed in the bridge RC slab.

A Study on a Moving Adaptive Grid Generation Method Using a Level-set Scheme (레벨셋법을 이용한 이동 집중격자 생성법에 대한 연구)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.18-27
    • /
    • 2002
  • In order to improve the accuracy of the solution near the boundary in an analysis of viscous flow around an arbitrary boundary which move and be deformed using an Eulerian concept, a level-set based grid deformation method is introduced to concentrate grid points near the boundary. This paper presents a new monitor function which can easily control the level of the concentration of grid points along the boundary. Computations for steady flow around a semi-circular cylinder mounted on the bottom of the flow domain were carried out to check the improvement of the solution using the adaptive grid system with an immersed boundary method. The present numerical results show a good agreement with the solutions obtained by a body fitted grid system and more accurate solutions than those computed with non-adaptive grid system. For the validation of mechanical usefulness of the present method, an expanded analysis of flow around multi-body fixed in the flow domain was carried out. Finally, the present moving adaptive grid method was applied to a two-dimensional bubble rise problem. The computed results show well adapted grid points around the boundary of the bubble at every time and a good agreement with the result calculated by fixed grid system.

The Basic Study on the Technique of Fluid Flow Analysis Using the Immersed Boundary Method (가상 경계 방법을 이용한 유동 해석 기법에 관한 기초 연구)

  • Yang, Seung-Ho;Ha, Man-Yeong;Park, Il-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.619-627
    • /
    • 2004
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method. The results agree well with previous numerical and experimental results. This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications. The usefulness of this method will be confirmed when we solve the complex geometries and moving bodies.