• Title/Summary/Keyword: Boundaries

Search Result 3,812, Processing Time 0.022 seconds

Chemically Induced Grain Boundary Migration of MgAl2O4 by ZnO (ZnO의 화학구동력에 의한 $MgAl_2O_4$의 입계이동)

  • Choi, Kyoon;Cho, Eu-Seong;Kang, Suk-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.888-892
    • /
    • 1992
  • The chemically induced grain-boundary migration has been studied in MgAl2O4 spinel under ZnO atmosphere. MgAl2O4 compacts been prepared by sintering powder mixture of Al2O3 and MgO at 1$600^{\circ}C$ for 60 h in air. The sintered MgAl2O4 has been heat-treated at 150$0^{\circ}C$ in a ZnO atmosphere. During the heat-treatment grain boundaries have become curved or faceted, and the total area of grain boundaries have increased. In the migrated region, the ZnO content is higher by 6 wt% than that in other regions, indicating that the migration was induced by addition of ZnO. In some shrinking grains, the faceted planes of different grain boundaries for the same grain are parallel to each other. This result provide an experimental support for the coherency strain energy in diffusion layer of the shrinking grain as being the major driving force. Calculated coherency strain energy of MgAl2O4 shows the maximum at {111} planes and the minimum at {100} planes. Although the minimum surface energy is at {111} planes, the faceted moving boundaries are expected to be {100} planes because of lowest driving force for the grain-boundary migration.

  • PDF

Crystallographic Effects of Anode on the Mechanical Properties of Electrochemically Deposited Copper Films (아노드의 결정성에 따른 전기도금 구리박막의 기계적 특성 연구)

  • Kang, Byung-Hak;Park, Jieun;Park, Kangju;Yoo, Dayoung;Lee, Dajeong;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.714-720
    • /
    • 2016
  • We performed this study to understand the effect of a single-crystalline anode on the mechanical properties of as-deposited films during electrochemical deposition. We used a (111) single- crystalline Cu plate as an anode, and Si substrates with Cr/Au conductive seed layers were prepared for the cathode. Electrodeposition was performed with a standard 3-electrode system in copper sulfate electrolyte. Interestingly, the grain boundaries of the as-deposited Cu thin films using single-crystalline Cu anode were not distinct; this is in contrast to the easily recognizable grain boundaries of the Cu thin films that were formed using a poly-crystalline Cu anode. Tensile testing was performed to obtain the mechanical properties of the Cu thin films. Ultimate tensile strength and elongation to failure of the Cu thin films fabricated using the (111) single-crystalline Cu anode were found to have increased by approximately 52 % and 37 %, respectively, compared with those values of the Cu thin films fabricated using apoly-crystalline Cu anode. We applied ultrasonic irradiation during electrodeposition to disturb the uniform stream; we then observed no single-crystalline anode effect. Consequently, it is presumed that the single-crystalline Cu anode can induce a directional/uniform stream of ions in the electrolyte that can create films with smeared grain boundaries, which boundaries strongly affect the mechanical properties of the electrodeposited Cu films.

Effects of Preferential Diffusion on Downstream Interaction in Premixed $H_2$/CO Syngas-air Flames (상호작용하는 $H_2$-CO 예혼합 화염에서 $H_2$선호확산의 영향에 관한 수치적 연구)

  • Oh, Sanghoon;Park, Jeong;Kwon, Ohboong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.17-29
    • /
    • 2012
  • The effects of strain rate and preferential diffusion of $H_2$ on flame extinction are numerically studied in interacting premixed syngas-air flames with fuel compositions of 50% $H_2$ + 50% CO and 30% $H_2$ + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. $a_g=30s^{-1}$ and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of $H_2$ cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of $H_2$ and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.

Microstructure and Mechanical Properties of $Al_2$O$_3$/t-ZrO$_2$ Particulate Composites (Al$_2$O$_3$/t-ZrO$_2$ 입자복합체의 미세구조 및 기계적 성질)

  • 심동훈;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.734-741
    • /
    • 1999
  • Al2O3/t-ZrO2 particulate composites were prepared by sintering at 150$0^{\circ}C$ and 1$600^{\circ}C$ for 2h in air and microstructure and mechanical properties of the composites were investigated. Although most ZrO2 particles existed at Al2O3 grain boundaries a few ZrO2 particles within Al2O3 grains. Al2O3 grain growth was depressed due to the pinning effect by ZrO2 particles. During sintering coarsening of intergranular ZrO2 particles occurred as a results of the elimination of ZrO2 intraagglomerate grain boundaries and the coalescence of dragged ZrO2 particles by migrating Al2O3 grain boundries. Changes in mechanical properties of Al2O3 composites were dependant on microstructure of Al2O3 matrix and on size and structure of dispersed ZrO2.

  • PDF

Detection of formation boundaries and permeable fractures based on frequency-domain Stoneley wave logs

  • Saito Hiroyuki;Hayashi Kazuo;Iikura Yoshikazu
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2004
  • This paper describes a method of detecting formation boundaries, and permeable fractures, from frequency-domain Stoneley wave logs. Field data sets were collected between the depths of 330 and 360 m in well EE-4 in the Higashi-Hachimantai geothermal field, using a monopole acoustic logging tool with a source central frequency of 15 kHz. Stoneley wave amplitude spectra were calculated by performing a fast Fourier transform on the waveforms, and the spectra were then collected into a frequency-depth distribution of Stoneley wave amplitudes. The frequency-domain Stoneley wave log shows four main characteristic peaks at frequencies 6.5, 8.8, 12, and 13.3 kHz. The magnitudes of the Stoneley wave at these four frequencies are affected by formation properties. The Stoneley wave at higher frequencies (12 and 13.3 kHz) has higher amplitudes in hard formations than in soft formations, while the wave at lower frequencies (6.5 and 8.8 kHz) has higher amplitudes in soft formations than in hard formations. The correlation of the frequency-domain Stoneley wave log with the logs of lithology, degree of welding, and P-wave velocity is excellent, with all of them showing similar discontinuities at the depths of formation boundaries. It is obvious from these facts that the frequency-domain Stoneley wave log provides useful clues for detecting formation boundaries. The frequency-domain Stoneley wave logs are also applicable to the detection of a single permeable fracture. The procedure uses the Stoneley wave spectral amplitude logs at the four frequencies, and weighting functions. The optimally weighted sum of the four Stoneley wave spectral amplitudes becomes almost constant at all depths, except at the depth of a permeable fracture. The assumptions that underlie this procedure are that the energy of the Stoneley wave is conserved in continuous media, but that attenuation of the Stoneley wave may occur at a permeable fracture. This attenuation may take place at anyone of the four characteristic Stoneley wave frequencies. We think our multispectral approach is the only reliable method for the detection of permeable fractures.

Information Fusion of Photogrammetric Imagery and Lidar for Reliable Building Extraction (광학 영상과 Lidar의 정보 융합에 의한 신뢰성 있는 구조물 검출)

  • Lee, Dong-Hyuk;Lee, Kyoung-Mu;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.236-244
    • /
    • 2008
  • We propose a new building detection and description algorithm for Lidar data and photogrammetric imagery using color segmentation, line segments matching, perceptual grouping. Our algorithm consists of two steps. In the first step, from the initial building regions extracted from Lidar data and the color segmentation results from the photogrammetric imagery, we extract coarse building boundaries based on the Lidar results with split and merge technique from aerial imagery. In the secondstep, we extract precise building boundaries based on coarse building boundaries and edges from aerial imagery using line segments matching and perceptual grouping. The contribution of this algorithm is that color information in photogrammetric imagery is used to complement collapsed building boundaries obtained by Lidar. Moreover, linearity of the edges and construction of closed roof form are used to reflect the characteristic of man-made object. Experimental results on multisensor data demonstrate that the proposed algorithm produces more accurate and reliable results than Lidar sensor.

An Improved PCF Technique for The Generation of Shadows (그림자생성을 위한 개선된 PCF 기법)

  • Yu, Young-Jung;Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1442-1449
    • /
    • 2007
  • Shadows are important elements for realistic rendering of the 3D scene. We cannot recognize the distance of objects in the 3D scene without shadows. Two methods, image-based medthods and object-based methods, are largely used for the rendering of shadows. Object based methods can generate accurate shadow boundaries. However, it cannot be used to generate the realtime shadows because the time complexity defends on the complexity of the 3D scene. Image based methods which are techniques to generate shadows are widely used because of fast calculation time. However, this algorithm has aliasing problems. PCF is a method to solve the aliasing problem. Using PCF technique, antialiased shadow boundaries can be generated. However, PCF with large filter size requires more time to calculate antialiased shadow boundaries. This paper proposes an improved PCF technique which generates antialiased shadow boundaries similar to that of PCF. Compared with PCF, this technique can generate antialiased shadows in less time.

Physics-based modelling and validation of inter-granular helium behaviour in SCIANTIX

  • Giorgi, R.;Cechet, A.;Cognini, L.;Magni, A.;Pizzocri, D.;Zullo, G.;Schubert, A.;Van Uffelen, P.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2367-2375
    • /
    • 2022
  • In this work, we propose a new mechanistic model for the treatment of helium behaviour at the grain boundaries in oxide nuclear fuel. The model provides a rate-theory description of helium inter-granular behaviour, considering diffusion towards grain edges, trapping in lenticular bubbles, and thermal resolution. It is paired with a rate-theory description of helium intra-granular behaviour that includes diffusion towards grain boundaries, trapping in spherical bubbles, and thermal re-solution. The proposed model has been implemented in the meso-scale software designed for coupling with fuel performance codes SCIANTIX. It is validated against thermal desorption experiments performed on doped UO2 samples annealed at different temperatures. The overall agreement of the new model with the experimental data is improved, both in terms of integral helium release and of the helium release rate. By considering the contribution of helium at the grain boundaries in the new model, it is possible to represent the kinetics of helium release rate at high temperature. Given the uncertainties involved in the initial conditions for the inter-granular part of the model and the uncertainties associated to some model parameters for which limited lower-length scale information is available, such as the helium diffusivity at the grain boundaries, the results are complemented by a dedicated uncertainty analysis. This assessment demonstrates that the initial conditions, chosen in a reasonable range, have limited impact on the results, and confirms that it is possible to achieve satisfying results using sound values for the uncertain physical parameters.

Speech Perception Boundaries of Korean Confusing Monosyllabic Minimal Pairs (CVC) in Normal Adults (한국어 초, 중, 종성 혼돈 단음절 최소대립쌍 (CVC)에 대한 정상 성인의 지각경계 연구)

  • Lee, Sung-Min;Lim, Duk-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.325-331
    • /
    • 2010
  • Categorical perception has been noted as characteristic properties of linguistic stimuli. In this study, Korean monosyllabic minimal pairs (consonant-vowel-consonant, CVC) were analyzed to understand perception boundaries between clinically confusing words. An efficient scheme has been developed to systematically synthesize temporal transition waveforms (11 steps) from one word to the target word for the pairs of /gom/-/gong/, /non/-/noon/, and /don/-/non/. The corresponding slopes, widths, and non-dominant factors of perception boundaries were analyzed for the total of 40 young normal subjects (20 males and 20 females). Results showed that there were relative pattern differences among confusing monosyllabic minimal pairs under categorical perception. For instance, the vowel difference within CVC pairs led to the lowest boundary performance in this experiment set. Data also indicated the potential application of the overall procedure for evaluating auditory functions and assisting rehabilitation programs.

Working memory and sensitivity to prosody in spoken language processing (언어 처리에서 운율 제약 활용과 작업 기억의 관계)

  • Lee, Eun-Kyung
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.2
    • /
    • pp.249-267
    • /
    • 2012
  • Individual differences in working memory predict qualitative differences in language processing. High span comprehenders are better able to integrate probabilistic information such as plausibility and animacy, the use of which requires the computation of real world knowledge in syntactic parsing (e.g.,[1]). However, it is unclear whether similar individual differences exist in the use of informative prosodic cues. This study examines whether working memory modulates the use of prosodic boundary information in attachment ambiguity resolution. Prosodic boundaries were manipulated in globally ambiguous relative clause sentences. The results show that high span listeners are more likely to be sensitive to the distinction between different types of prosodic boundaries than low span listeners. The findings suggest that like high-level constraints, the use of low-level prosodic information is resource demanding.

  • PDF