• 제목/요약/키워드: Bouncing Phenomena

검색결과 11건 처리시간 0.024초

잉크젯 프린팅에서 발생하는 연속 미소 액적의 바운싱 현상 (Bouncing Phenomena of Micro-droplet Train in Inkjet Printing)

  • 조아라;김형수
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.26-30
    • /
    • 2023
  • Interaction of a droplet and substrate is important to determine the coating and final deposition pattern in inkjet printing system. In particular, an accurate deposition of the droplet should be guaranteed for high-resolution patterning. In this study, we performed high-speed shadowgraph experiments on droplet train impact in inkjet system. From the high-speed images, we observed an unexpected bouncing phenomenon. We have found two factors affecting bouncing regime; the Weber number and the curvature of deposited droplet. Experimental results indicate that there is a critical curvature diameter of deposited droplet, which splits into bouncing and merging regime. From this result, we obtained a power-law behavior between the Weber number and the curvature. The understanding of bouncing phenomena helps to improve the accuracy and productivity of inkjet printing.

래칭 릴레이의 온도에 따른 동작 특성 변화 (Change of Operating Characteristics of Latching Relay with Temperature)

  • 류재만;진인영;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제30권8호
    • /
    • pp.520-524
    • /
    • 2017
  • Electrical relay in an essential part of smart grids, electrical vehicles, and LED lightning systems. Therefore, studying relay reliability is important. Relays using permanent magnet actuators (PMAs), which are energy efficient, are also in the spotlight. However, most of the permanent magnets used in PMAs have a characteristic wherein the magnetic flux decreases as the temperature increases. When the magnetic flux is reduced, the force acting on the actuator is reduced. Therefore, in this study, we measured the decrease in the relay operating speed with permanent magnet reduction due to temperature rise. In addition, changes in the bouncing phenomena due to magnetic flux reduction were analyzed. As a result, the operating speed of the relay has decreased and the bouncing phenomenon has not significantly changed.

고속으로 입수하는 물체에 대한 충격량 및 입수 거동 해석 (Numerical Analysis of Impact Forces and Entry Behaviors of the High Speed Water Entry Bodies)

  • 김영우;박원규;김찬수
    • 한국전산유체공학회지
    • /
    • 제4권1호
    • /
    • pp.1-7
    • /
    • 1999
  • The numerical methodology for computing tile impact forces and water entry behaviors of high speed water entry bodies was been developed. Since the present method assumed the impact occurs within a very short time interval. the viscous effects do not have enough time to play a significant role in the impact forces, that is, the flow around a water-entry object was assumed as an incompressible potential flow and is solved by the source panel method. The elements fully submerged into the water are routinely treated, but the elements intersected by the effective planar free surface are redefined and reorganized to be amenable to the source panel method. To validate the present code, it was applied to disk, cone and ogive model and compared with experimental data. Good agreement was obtained. The water entry behavior such as the bouncing phenomena from the free surface was also simulated using the impact forces and two degree of freedom dynamic equation. Physically acceptable results were obtained.

  • PDF

표면 전하 유무에 따른 대전된 미소액적의 충돌 현상 (The impact behaviors of electrified micro-droplet with existence and nonexistence of electrical charged for surface)

  • 이재현;김지훈;변도영
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.49-53
    • /
    • 2015
  • Recently, researches for droplet impact phenomena have been faced a new phase in the direction of studying the effect of complex external conditions (e.g. wettability, temperature, morphology, electric field, etc.) for depth understanding and precise controlling in various applications. Hence, here we investigated the electrified droplet impact phenomena, because there were few quantitative researches for electrified droplet impact when we considering many real applications such as electrospray, electrohydrodynamic (EHD) jet printing. To observe interaction effect of surface charge between substrate and droplet simultaneously, micro-droplets with various Reynolds number (Re) and Weber number (We) were dripped on super-hydrophobic surface with existence and nonexistence of electrical surface charge. It shows three kinds of impact behaviors, fully bouncing, partial bouncing, and splashing with different We. Also, charged droplet bounced higher on electrically charged surface than on non-charged surface. Additionally, transition regions of three impact behaviors were classified quantitatively with water hammer pressure value, which means instant pressure inside droplet at the impact moment.

액적의 액막 충돌에 대한 수치해석 (A Numerical Analysis of a Drop Impact on the Liquid Surface)

  • 이상혁;허남건;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2568-2573
    • /
    • 2008
  • A drop impact on the liquid film/pool generates several phenomena such as the drop floating, bouncing, formation of vortex ring, jetting, bubble entrapment and splashing. These phenomena depend on the impact velocity, the drop size, the drop properties and the liquid film/pool thickness. These parameters can be summarized by four main dimensionless parameters; Weber number, Ohnesorge number, Froude number and non-dimensional film/pool thickness. In the present study, the phenomena of the splashing and bubble entrapment due to the drop impact on the liquid film/pool were numerically investigated by using a Level Set method for the sharp interface tracking of two distinct phases. After the drop impact, the splashing phenomena with the crown formation and spreading were predicted. Under the specific conditions, the bubble entrapment at the base of the collapsing cavity due to the drop impact was also observed. The numerical results were compared to the available experimental data showing good agreements.

  • PDF

비선형 헤르쯔 접촉스프링과 변위제한조건식의 적용에 의한 차량-궤도-교량 동적상호작용 수치해석기법 (Simulation of Vehicle-Track-Bridge Dynamic Interaction by Nonlinear Hertzian Contact Spring and Displacement Constraint Equations)

  • 정근영;이성욱;민경주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.191-196
    • /
    • 2005
  • In this study, to describe vehicle-track-bridge dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are introduced. In this approach external loads acting on 1/4 vehicle model are self weight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by Penalty method. Also, to improve the numerical stability and to maintain accuracy of solution, the artificial damper and the reaction from constraint violation are introduced. A nonlinear time integration method, in this study, Newmark method is adopted for both equations of vehicles and structure. And to reduce the error caused by inadequate time step size, adaptive time-stepping technique is partially introduced. As the nonlinear Hertzian contact spring has no resistance to tensile force, the bouncing phenomena of wheelset can be described. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems.

  • PDF

연료 제트의 두 액적간의 충돌기구에 관한 실험적 연구 (Experimental Investigation of Collision Mechanisms Between Binary Droplet of Fuel Jet)

  • 이근희;김사엽;이창식
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.187-192
    • /
    • 2008
  • In this study, the mechanisms of binary droplet collision were studied with diesel, ethanol and purified water. The droplet collisions of liquid droplet have been investigated for the same droplet diameter. In order to obtain the digital images of the droplet collision behavior, the experimental equipment was composed of the droplet generating system and the droplet visualization system. The droplets were produced by the vibrating orifice monodisperse generator. The visualization system consisted of a long distance microscope, a light source, and a high speed camera. The outcomes of binary droplet collision can be divided into four regimes, bouncing, coalescence, reflexive separation and stretching separation. The impact angle and the relative velocity of binary droplet are main parameters of collision phenomena, so the transition mechanism of droplet collision can be divided by the impact parameter.

  • PDF

고속으로 입수하는 물체의 입수 거동 해석 (Numerical Analysis of Water Entry Behavior of the High Speed)

  • 김영우;박원규;김찬수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.167-174
    • /
    • 1998
  • The numerical methodology for simulating water entry behaviors of the high-speed bodies has been developed. Since the present method assumed the impact occurs within a very short time interval, the viscous effects do not have enough time to play a significant role in the impact forces, that is, the flow around a water-entry object was assumed as an incompressible potential flow and is solved by the source panel method. The elements fully submerged into the water are routinely teated, but the elements intersected by the effective planar free surface are redefined and reorganized to be amenable to the source panel method. To validate the present code, it has been applied to the ogive model and compared with experimental data. Good agreement has been obtained. The water entry behavior of the bouncing phenomena from the free surface has been also simulated using the impact forces and two degree of freedom dynamic equation. Physically, acceptable results have been obtained.

  • PDF

동축 스월형 분사기에서 충돌 모델 연구 (A Study of Collision Model in Coaxial Swirl Injector)

  • 문윤완;설우석;윤영빈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.320-323
    • /
    • 2008
  • In this study the effect of collision model was evaluated in spray field by CFD. A collision is basically the interaction between droplets and criteria of collision is determined by drop Weber number, impact parameter, and drop-size ratio. Early developed collision model considered coalescence and grazing collision with the exchange of momentum. However in experimental research there were bouncing, coalescence, reflexive separating and stretching separating in interaction between droplets. In this study the collision considering such complex phenomena is modeled and was compared with the basic collision model.

  • PDF

Level Set 방법을 이용한 액적 충돌 현상에 대한 수치해석 (A Numerical Analysis on the Binary Droplet Collision with the Level Set Method)

  • 이상혁;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.559-564
    • /
    • 2008
  • A prediction of binary droplets collision is important in the formation of falling drops and the evolution of sprays. The droplet velocity, impact parameter and drop-size ratio have influence on the interaction of the droplets. By the effect of these parameter, the collision processes are generated with the complicated phenomena. The droplet collision can be classified into four interactions such as the bouncing, coalescence, reflexive separation and stretching separation. In this study, the two-phase flow of the droplet collision was simulated numerically by using the Level Set method. 2D axi-symmetric simulations on the head-on collisions in the coalescence and reflexive separation, and 3D simulation on the off-center collisions in the coalescence and stretching separation were performed. These numerical results showed good agreements with the experimental and analytical results. For tracking the identity of droplets after the collision, transport equation for the volume fraction of the each initial droplet were used. From this, the identities of droplets were analyzed on the collision of droplets having different size.

  • PDF