• Title/Summary/Keyword: Bottom-Up Model

Search Result 264, Processing Time 0.035 seconds

Seasonal Succession of Zooplankton Community in a Large Reservoir of Summer Monsoon Region (Lake Soyang) (몬순지역 대형댐(소양호)에서 동물플랑크톤 군집의 계절천이)

  • Kim, Moon Sook;Kim, Bomchul;Jun, Man-Sig
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Seasonal succession of zooplankton community and species composition was studied from 2003 to 2014 in a deep reservoir, Lake Soyang, in monsoon climate region, Korea. Annual precipitation was concentrated more than 70% between June and September and it showed remarkably that seasonal variation in water quality. Seasonal variation of water quality in Lake Soyang appeared to be more significant than annual variations, and the inflow of turbid water during the summer rainfall was the most important environmental factor. Zooplankton sepecies composition in Lake Soyang showed obvious tendency through two periods (May to June and August to October) every year. Small zooplankton (rotifer; Keratella cochlearis, Polyarthra vulgaris) dominated in spring and mesozooplankton such as copepods and crustaceans were dominant in summer and fall. Zooplankton biomass showed the maximum in September after monsoon rainfall, and chlorophyll showed a similar seasonal variation and it showed a high correlation (r=0.45). The increase of zooplankton biomass is considered to be a bottom-up effect due to the increase of primary producers and inflow of nutrients and organic matter from rainfall. In this study, we found that the variation of zooplankton community was affected by rainfall in monsoon climate region and inflow of turbid water was an important environmental factor, which influenced the water quality, zooplankton seasonal succession in Lake Soyang. It was also considered to be influenced by hydrological characteristics of lake and environment of watershed. In conclusion, seasonal succession of zooplankton species composition was the same as the PEG model. But seasonal succession of zooplankton biomass differed not only in the temperate lake but also in the monsoon region.

Long-term Performance Prediction of Piezoelectric Energy Harvesting Road Using a 3-Dimensional Finite Element Method (3차원 유한요소 해석을 통한 압전에너지 도로의 장기 공용성 예측)

  • Kim, Hyun Wook;Nam, Jeong-Hee;Choi, Ji Young
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.107-115
    • /
    • 2017
  • PURPOSES : The piezoelectric energy road analysis technology using a three-dimensional finite element method was developed to investigate pavement behaviors when piezoelectric energy harvesters and a new polyurethane surface layer were installed in field conditions. The main purpose of this study is to predict the long-term performance of the piezoelectric energy road through the proposed analytical steps. METHODS : To predict the stresses and strains of the piezoelectric energy road, the developed energy harvesters were embedded into the polyurethane surface layer (50 mm from the top surface). The typical type of triaxial dump truck loading was applied to the top of each energy harvester. In this paper, a general purpose finite element analysis program called ABAQUS was used and it was assumed that a harvester is installed in the cross section of a typical asphalt pavement structure. RESULTS : The maximum tensile stress of the polyurethane surface layer in the initial fatigue model occurred up to 0.035 MPa in the transverse direction when the truck tire load was loaded on the top of each harvester. The maximum tensile stresses were 0.025 MPa in the intermediate fatigue model and 0.013 MPa in the final fatigue model, which were 72% and 37% lower than that of the initial stage model, respectively. CONCLUSIONS : The main critical damage locations can be estimated between the base layer and the surface layer. If the crack propagates, bottom-up cracking from the base layer is the main cracking pattern where the tensile stress is higher than in other locations. It is also considered that the possibility of cracking in the top-down direction at the edge of energy harvester is more likely to occur because the material strength of the energy harvester is much higher and plays a role in the supporting points. In terms of long-term performance, all tensile stresses in the energy harvester and polyurethane layer are less than 1% of the maximum tensile strength and the possibility of fatigue damage was very low. Since the harvester is embedded in the surface layer of the polyurethane, which has higher tensile strength and toughness, it can assure a good, long-term performance.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.

An Experimental Study on the Stress Behavior of Coped Stringers in Steel Railway Bridge - II : Repair · Strengthening Method (철도교 세로보 절취부에서의 응력거동에 관한 실험적 연구 - II : 보수·보강 방법)

  • Li, Guang Ri;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.307-313
    • /
    • 2009
  • In this study, in order to research the repair-strengthening methods, when fatigue crack occurs in the coped stringers of a steel railway bridge, we manufacture the full size of crossbeam-stringer and floor system model. Also the experimental test is performed on the coped stringers applying the repair-strengthening methods using the stop hole, combination plate, connection plate, bracket, and so on. The results indicate that, the most effective method is to set up connection plate and bracket in the top flange and bottom flange of the stringers, while we can consider the method of punching stop holes in the end of the crack as a subsidiary method. It is necessary to set up the combination plate when the length of crack is quite long.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

Observations on the Coastal Ocean Response to Typhoon Maemi at the East Sea Real-time Ocean Buoy (동해 실시간 해양관측 부이로부터 관측한 태풍 매미에 대한 연안해양의 반응 고찰)

  • Nam, Sung-Hyun;Yun, Jae-Yul;Kim, Kuh
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.111-118
    • /
    • 2004
  • An ocean buoy was deployed 10 km off Donghae city, Korea at a depth of 130 m to measure meteorological (air pressure, air temperature, wind speed, wind gust, wind direction, relative humidity) and oceanographic data (water properties and currents in the whole column) in real-time. The buoy recorded a maximum wind gust of 25 m/s (10 minutes' average speed of 20 m/s) and a minimum air pressure of 980 hPa when the eye of typhoon Maemi passed by near the Uljin city, Korea at 03:00 on 13 September 2003. The wave height reached maximum of 9 m with the significant wave height of 4 m at 04:00 (1 hour after the passage of Maemi). The currents measured near the surface reached up to about 100 cm/s at 13:00 (10 hours after the passage of Maemi). The mixed layer (high temperature and low salinity) thickness, which was accompanied by strong southward current, gradually increased from 20 m to 40 m during the 10 hours. A simple two layer model for the response to an impulsive alongshore wind over an uniformly sloping bottom developed by Csanady (1984) showed reasonable estimates of alongshore and offshore currents and interface displacement for the condition of typhoon Maemi at the buoy position (x=8.15 km) during the 10 hours.

A Comparative Study on the Politico-Social Characteristics of Education Welfare Invest Priority Zone Plan, Korea with the Cases in UK and France (영국과 프랑스의 교육복지사업 비교연구를 통해서 본 우리나라 교복투사업의 정치사회학적 성격)

  • Kang, Soon Won
    • Korean Journal of Comparative Education
    • /
    • v.22 no.4
    • /
    • pp.1-24
    • /
    • 2012
  • This comparative study attempts to explore in what politico-social context 'Education Welfare Invest Priority Zone Plan' has been developed and to find politico-social implications of Korean EWIPZP through critically comparing the cases of UK and France. Korean financial crisis brought up the importance of 'Education Welfare' turning into a concrete system, 'EWIPZP' in 2003. This educational welfare policy has expanded since 2005 up to now by the changed name of 'Education Welfare Priority Plan' in 2008, that is structurally different from the original framework which was to support schools in educationally disadvantaged areas. Even the cases of EAZ in UK and ZEP in France started by progressive political parties and established on the ground of 'equity' philosophy, turned into the excellence-based equality policy confronting with the harsh condition of neo-liberalistic global economy under the conservative regime. So does Korea under the critics against this tendency. Comparing Korean case with the cases in UK and France, the current Education Welfare Priority Policy in Korea should be back to the original principle of educational equity and transform into the bottom-up bilateral cooperation model from the top-down model by the authorized party itself in order not to be manipulated politically.

STUDY ON THE ANCHOVY BOAT SEINE 1. On the Hydrodynamic Resistance and Performance of the Conventional Gear (기선기현강의 연구 1, 재래식 어구의 유구저황과 그물꼴에 관하여)

  • LEE Byoung-gee;YANG Yong-rim;SU Young-tae;SON Boo-il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.4 no.3_4
    • /
    • pp.79-91
    • /
    • 1971
  • A boat seine has been used as a major fishing gear for catching anchovy (Engraulis japonica) in the southern coastal waters of Korea since 1920s. The original seine was operated by two rowing boats as the haul seine. The rowing boats were, in recent, replaced by powered boats. The net size was enlarged by more than three times the original nit as they began to by operated in the deeper waters of approximately sixty meters. However, there are many problems in the efficiency of the fishing gear to be improved. The authors studied on the hydrodynamic resistance and performance of the boat seine net of the 1/10 scale model in tow. The results are summaried as follows. 1. The hydrodynamic resistance converted from model experiment into the full scale is: $$R_1=30,000\;v^{1.2}\;(0.2{\leqq}v{\leqq}1.0)$$ $$R_2=16,000\;v^2\;(0.2{\leqq}v{\leqq}0.6)$$ where $R_1$ and $R_2$ denote the resistance of whole gear and of bag net in kg respectively, and v the speed of flow in m/sec. 2. In the extension wing, approximately seventy percent of the length of the ground rope from the towing end to the inside-wing slopes down from sea level toward the sea bottom, while the thirty percent of the inside of it remains parallel with th: 5:a level. The performance is regarded to b: inefficient for driving fish shoal into the inside-wing, especially for the shoal diving suddenly. 3. At the towing speed higher than 0.2 m/sec, the trailing edge of the inside-wing is blown backward beyond the seaming line connecting the inside-wing and the mouth of the bag net. It is regarded as an unreasonable performance to drive the fish shoal smoothly into the bag net. 4. At the towing speed higher than 0.2 m/sec, the posterior end of the lower bosom is lifted up above the level of the ground rope of the inside-wing. It is considered that the fish shoal diving suddenly can escape through the discrepancy between the lower bosom and the sea bottom, even if the ground rope of the inside-wing sweeps the sea bottom. 5. The angle of inclination of the upper bosom is estimated as $35\~40^{\circ}$. It seems that the inclination is too steep to drive smoothly the fish shoal diving toward the sea bottom into the bag net. 6. In structure, circumference of the posterior section of the bag net is wider by 1.3 times that of the anterior section. Actually in towing at a speed higher than 0.2m/sec, however, the circumference of the posterior section becomes smaller than that of the anterior section. It is recommended to be designed in a long cylindrical form.

  • PDF

Geophysical Evidence Indicating the Presence of Gas Hydrates in a Mud Volcano(MV420) in the Canadian Beaufort Sea (캐나다 보퍼트해 진흙화산(MV420) 내 가스하이드레이트 부존을 지시하는 지구물리학적 증거)

  • Yeonjin Choi;Young-Gyun Kim;Seung-Goo Kang;Young Keun Jin;Jong Kuk Hong;Wookeen Chung;Sung-Ryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.