• Title/Summary/Keyword: Bottom impact slamming

Search Result 22, Processing Time 0.022 seconds

Computation of Design Pressure against the Bow Bottom Slamming Impact (선수부 선저 슬래밍 충격에 대비한 설계압력의 산출)

  • Kim, Yong Jig;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.187-195
    • /
    • 2018
  • Ship's bottom slamming has been studied by many researchers for a very long time. But still some ships suffer structure damages caused by the bottom slamming impacts. This paper presents a practical computation method of the design impact pressure due to ship's bow bottom slamming. Large heave and pitch motions of a rigid hull ship are simulated by the nonlinear strip method in time domain and the relative colliding velocity between the bow bottom and the water surface is calculated using the simulated ship motions. The bottom slamming impact pressure is calculated as a product of the relative colliding velocity squared and the bottom slamming pressure coefficient that is obtained by modification of the SNAME pressure coefficients based on Ochi's slamming experiments. Not only the bottom slamming pressures but also the required bottom plate thicknesses are calculated and compared with those of the classification society rules. The comparisons show good agreements and it is confirmed that the present method is practically very useful for the bottom structure design against ship's bow bottom slamming impacts.

Numerical Prediction of Slamming Impact Loads and Response on a Ship in Waves Considering Relative Vertical Velocity (상대수직속도를 고려한 파랑중 선박의 슬래밍 충격하중 및 응답 계산)

  • Choi, Mun-Gwan;Park, In-Kyu;Koo, WeonCheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.503-509
    • /
    • 2014
  • This paper describes the time-domain numerical method for prediction of slamming loads on a ship in waves using the strip theory. The slamming loads was calculated considering the relative vertical velocity between the instantaneous ship motion and wave elevation. For applying the slamming force on a ship section, the momentum slamming theory and the empirical formula-based bottom slamming force were used corresponding to the vertical location of wetted body surface. Using the developed method, the vertical bending moments, relative vertical velocities, and impact forces of S175 containership were compared in the time series for various section locations and wave conditions.

Analysis on the Dynamic Respone of the Hull Structure due to Slamming Impact - By Finite Element Method - (슬래밍 충격을 받는 선체의 동적 응답해석 -유한요소법으로-)

  • Hong, Bong-Ki;Moon, Duk-Hong;Bae, Dong-Myung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 1983
  • In rough seas, actual behaviours of a ship may not be estimated by the linear strip theory, because of Nonlinearities due to the hull shape, bottom slamming and bottom and/or bow-flare slamming. In case of slamming, impulsive hydrodynamic pressure occurs on the fore body surface of the ship, resulting hull vibration called whipping, by which the ship may suffer from serious structural damages and the impact pressure, depends critically on the relative velocity at re-entry. In this paper, the Time history of impact froce at each station, the longitudinal distribution of impact force at critical time, the Time history of acceleration at F.P. and the Time history of Bending moment at midship are illustrated. That is, authors analyzed Dynamic response of container ship to be subjected slamming impact force.

  • PDF

Prediction and Response of Ship`s Hull Girder for Slamming - On The Impact Force of Foreward Flat Bottom Plate - (Slamming에 관한 선체의 응답과 예측 - 전부선저의 충격적 중심으로 -)

  • Hong, Bong-Ki;Kim, Sa-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.96-104
    • /
    • 1984
  • This paper is on the prediction and response of the ship hull girder due to slamming of foreward flat bottom plate. The response with respect to foreward flat bottom is divided two kinds by estimating method. One is the estimation of impact forces by slamming, Another is the response of hull girder due to impact forces, that is, displacement, velocity, acceleration, etc. must calculate the values for considered ship hull girder. In this paper, therefore, was estimated only impact forces along ship ordinate of foreward. The analysis of data for estimation followed mainly papers of Ochi. These estimated data shall contribute for ship gull construction for basic optimum design. In particular, the estimated impact forces shall be given for the response of ship gull girder on the foreward flat bottom plate with characteristics of external forces.

  • PDF

Experimental investigation of slamming impact acted on flat bottom bodies and cumulative damage

  • Shin, Hyunkyoung;Seo, Byoungcheon;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.294-306
    • /
    • 2018
  • Most offshore structures including offshore wind turbines, ships, etc. suffer from the impulsive pressure loads due to slamming phenomena in rough waves. The effects of elasticity & plasticity on such slamming loads are investigated through wet free drop test results of several steel unstiffened flat bottom bodies in the rectangular water tank. Also, their cumulative deformations by consecutively repetitive free drops from 1000 mm to 2000 mm in height are measured.

On the Design Impact Pressure in the Rules and Regulations of ISO and Classification Societies (선급 및 ISO에 나타난 설계충격 하중에 관하여)

  • Lee, June
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.31
    • /
    • pp.60-70
    • /
    • 2011
  • The slamming impact pressures at the bottom area of the Open60' are evaluated by the rules and regulations of various organizations - ISO and classification societies. The enhanced performance of the modern racing yacht in terms of speed which achieves well over 20 knots needs special consideration. The calculated design impact pressures are compared a experimental results. Severe difference can be found in these calculation results but the final conclusion shall be obtained after the scantling calculation under the evaluated design impact pressure so far.

  • PDF

A Study on Slamming Impact Pressure (슬래밍 충격 압력에 대한 연구)

  • Park, Jun-Soo;Oh, Seung-Hoon;Kwon, Sun-Hong;Chung, Jang-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 2009
  • This study presents the results of a slamming experiment using a pneumatic cylinder. The employment of the pneumatic cylinder showed a relatively good repeatability when the results were compared with those of other slamming devices. The experiment was done for various incident angles. An air pocket was believed to cause a reduction in the magnitude of the impact pressure with an incident angle of $0^{\circ}$ for the water entry. A high speed camera was used in an attempt to locate the time of the contact between the bottom of the specimen and the free surface. It seemed that the maximum pressure occurred before the water contacted the bottom of the specimen.

Numerical Simulation of Slamming Phenomena for 2-D Wedges (2차원 쐐기형 구조물의 슬래밍 현상에 대한 수치 유동해석)

  • Yum, Deuk-Joon;Yoon, Bum-Sang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.477-486
    • /
    • 2008
  • Numerical analysis for slamming impact phenomena has been carried out when 2-dimensional wedge shaped structure with finite deadrise angles enter the free surface by using a commertial CFD code, FLUENT. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct scheme (or PLIC-VOF scheme) is used for the tracking of the deforming free surface. User defined function of 6 degrees of freedom motion and moving dynamic mesh option are used for the expression of the downward motion of the structure and deforming of unstructured meshes adjacent to the structure. The magnitude and the location of impact pressure and the total drag force which is the summation of pressures distributed at the bottom of the structure are analyzed. Results of the analysis show good agreement with the results of similarity solution, asymptotic solution and the solution of BEM.

A Study on the Estimation of Hull Form Coefficient of Slamming Impact Pressure (슬래밍 충격 압력 계산을 위한 선수선저의 형상계수 추정에 관한 연구)

  • Jeong, Seok-Gwon;Hong, Bong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 1986
  • On the slamming analysis of ship design the data for the impact pressure acted on the forward bottom of a ship are needed. Furthermore impact pressure is given by the function of both the hull form coefficient and relative velocity. In this papper. a simplified method to estimate hull form coefficient by perso;,al computer (p. c.) is studied. This numerical analysis was applied to the model of the Mariner type. and then the result by the p. c. was compared with that by IBM 7090 computer. Main results obtained are as follows: 1. The result by the developed p. c. method had fairly good agreement with that by conventional large computer (IBM 7090) within 2% error. 2. This developed method' by p. c. may be applied to the initial estimation of the K-value because of the close agreement between the ship lines by the results of p. c. and that of input.

  • PDF

An Experimental Study on Slamming Impact Pressure and Flow Characteristics by Free Fall of Rectangular Marine Structure (직사각형 해양구조물의 자유낙하 슬래밍 충격압력 및 유동특성에 관한 실험적 연구)

  • Oh, Seung-Jin;Gim, Ok-Sok;Lee, Gyoung-Woo;Cho, Dae-Wan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.371-377
    • /
    • 2012
  • This paper presents an experimental investigation to figure out slamming impact pressure and flow characteristics of a rectangular Marine structure($800{\times}250{\times}50mm^3$) in free fall. The flow field has been obtained by 2-frame grey level cross correlation PIV(Particle Image Velocimetry) method, the impact pressure of the free fall model by a pressure acquisition system(Dewatron). The angles between a model and the free surface are adapted $10^{\circ}$ and $20^{\circ}$ respectively. Velocity field of water exit has higher better than water entry. The highest point, P2 of impact pressure under the bottom of the model has been appeared about 6 % higher values at 20 degrees than 10 degrees.