• Title/Summary/Keyword: Bottom gap

Search Result 175, Processing Time 0.043 seconds

Effect of trunk length on the flow around a fir tree

  • Lee, Jin-Pyung;Lee, Eui-Jae;Lee, Sang-Joon
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.69-82
    • /
    • 2014
  • Flow around a small white fir tree was investigated with varying the length of the bottom trunk (hereafter referred to as bottom gap). The velocity fields around the tree, which was placed in a closed-type wind tunnel test section, were quantitatively measured using particle image velocimetry (PIV) technique. Three different flow regions are observed behind the tree due to the bottom gap effect. Each flow region exhibits a different flow structure as a function of the bottom gap ratio. Depending on the gap ratio, the aerodynamic porosity of the tree changes and the different turbulence structure is induced. As the gap ratio increases, the maximum turbulence intensity is increased as well. However, the location of the local maximum turbulence intensity is nearly invariant. These changes in the flow and turbulence structures around a tree due to the bottom gap variation significantly affect the shelter effect of the tree. The wind-speed reduction is increased and the height of the maximum wind-speed reduction is decreased, as the gap ratio decreases.

Cu Plating Thickness Optimization by Bottom-up Gap-fill Mechanism in Dual Damascene Process (Dual Damascene 공정에서 Bottom-up Gap-fill 메커니즘을 이용한 Cu Plating 두께 최적화)

  • Yoo, Hae-Young;Kim, Nam-Hoon;Kim, Sang-Yong;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.93-94
    • /
    • 2005
  • Cu metallization using electrochemical plating(ECP) has played an important role in back end of line(BEOL) interconnect formation. In this work, we studied the optimized copper thickness using Bottom-up Gap-fill in Cu ECP, which is closely related with the pattern dependencies in Cu ECP and Cu dual damascene process at 0.13 ${\mu}m$ technology node. In order to select an optimized Cu ECP thickness, we examined Cu ECP bulge, Cu CMP dishing and electrical properties of via hole and line trench over dual damascene patterned wafers split into different ECP Cu thickness.

  • PDF

Pool Boiling Heat Transfer in Annuli with Closed Bottom

  • Kang, Myeong-Gie;Han, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.165-175
    • /
    • 2002
  • Effects of gap sizes (3.9-44.3 mm) of vertical annuli on nucleate pool boiling heat transfer of water at atmospheric pressure have been obtained experimentally. Through the study, tubes of the closed bottom have been investigated and results are compared with those of a single unconfined tube. According to the results, the annular condition gives much increase in heat transfer coefficient at moderate heat fluxes. The increase is much enhanced 3s the gap size decreases. At the same tube wall superheat (about 3.1 K) the heat transfer coefficient for the least gap size (i.e., 3.9 mm) is more than three times greater than that of the unconfined tube. However, deterioration of heat transfer occurs at high heat flux for confined boiling.

The Effect of Bottom Gap Size of Submerged Obstacle on Downstream Flow Field (수중 장애물의 하부틈새 크기가 하류 유동장에 미치는 영향)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • The coastal zone is a delicate and dynamic area in which the majority of a water kinetic energy is dissipated. These processes are subsequent to the transport of the beach materials. In comparison to emerged breakwaters, submerged structures permit the passage of some wave energy and in turn allow for circulation along the shoreline zone. This research aims to examine the beach erosion prevention capability of submerged structure by laboratory model. The flow characteristics behind a submerged obstacle with bottom gap were experimentally investigated at Re = $1.2{\times}10^4$ using the two-frame PIV(CACTUS 2000) system. Streamline curvature field behind the obstacle has been obtained by using the data of time-averaged mean velocity information. And the large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer. As bottom gap size increases, the recirculation occurring behind the obstacle moves toward downstream and its strength is weakened.

  • PDF

An evaluation on sealing performance of elastomeric O-ring compressed and highly pressurized (압축 및 내압을 받는 고무 오링의 기밀 성능 평가)

  • Park, Sung-Han;Kim, Jae-Hoon;Kim, Won-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.86-93
    • /
    • 2009
  • Elastomeric O-rings have been the most common seals due to their excellent sealing capacity, and availability in costs and sizes. One of the critical applications of O-ring seals is solid rocket motor joint seal where the operating hot gas must be sealed during the combustion. This has long been a design issue to avoid the system failure. For laterally constrained, squeezed and pressurized condition, deformed shape of O-ring was measured by computed tomography method and CCD laser sensor, compared with numerical calculations. As clearance gap changes, sealing performance had been evaluated on peak contact stresses at top, bottom and side contact surfaces. As clearance gap increases, peak contact stresses and contact widths in top and side contact surfaces increase, and the asymmetry of stress distributions is promoted due to pressure increase. It is suggested that peak stress of bottom contact surface can be approximated by simple superposition of peak ones due to squeeze and pressure. Under pressurized condition, sealing performance is dependent on not peak stresses of bottom and side contact surfaces but that of top.

NUMERICAL INVESTIGATION ON BOTTOM GAP OF MICRO FLOW SENSOR

  • Abdullahl Mohd Zulkiefly;Kouta T;Kamijo Takuma;Yamamoto Makoto;Honami Shinji;Kamiunten Shoji
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2005
  • Micro sensor is very useful for flow measurements in a number of engineering applications. Especially, it is necessary for the development of MEMS. This paper presents the 3D numerical simulation of flows around a micro flow sensor, which is mounted on a flat plate. The effects of the sensor configuration (i.e. bottom gap) and the Reynolds number on the flow field are numerically investigated. The numerical results indicate that the bottom gap clearly affects the flow fields over the top surface of the sensor. The Reynolds numbers also show a significant influence on the flow nature, especially on the recirculation zone at downstream of the sensor. The present results illustrate a certain improvement on the flow field for the sensor installed at O.5mm above the wall with four pillars, comparing with that directly mounted on the wall.

Nucleate Pool Boiling Heat Transfer in Vertical Annuli (수직 환상 공간 내부의 풀핵비등 열전달)

  • Gang, Myeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1113-1121
    • /
    • 2001
  • Effects of gap sizes(3.9 and 15mm) of vertical annuli and the bottom blockage on the nucleate pool boiling heat transfer at atmospheric pressure condition have been examined experimentally, and the results were compared to those with a single tube without confinement. The annular geometry resulted in significant increase in heat transfer coefficient. The effect is much enhanced with the bottom blockage. The heat transfer coefficient for the closed bottom condition is three times greater than the unconfined tube at 30kW/㎡ when the gap size is 3.9mm. However, with further increase of the heat flux much more than 70kW/㎡, all these effects were diminished.

FEM Simulation of Lap Joint in $CO_2$ Laser Welding of Zn-coated Steel (아연도금 강판의 $CO_2$ 레이저 용접에서 겹치기 용접의 FEM 시뮬레이션)

  • 김재도;조치용
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.52-62
    • /
    • 1998
  • Laser beam welding of zinc-coated steel, especially lap joints, has a problem of zinc vapor produced during welding which has a low vaporization temperature of 906.deg. C. It is lower than the melting temperature of steel (1500.deg. C). The high pressure formed by vaporization of zinc during laser welding splatters the molten pool and creates porosities in weld. During laser lap welds of zinc-coated steel sheets with CW CO$_{2}$ laser the gap size has been analyzed and simulated using a FEM. The simulation has been carried out in the range of gap aetween 0 and 0.16 mm. The vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In the case of too small gap size, zinc gas has not ejected and existed between two sheets. Therefore heat was difficult to conduct from the upper sheet to lower sheet and the upper sheet could over-melted. In the case of large gap size the zinc gas has been prefectly ejected but only a part of lower sheet has melted. The optimum range of gap size in the lap welds of zinc-coated steel sheets has been calculated to be between 0.08 and 0.12 mm. According to the comparison of experiment, the simulation is proved to be acceptable and applicable to laser lap welds.

  • PDF

An Analysis of Hydraulic Characteristics in Sea Dike Closure Gap Using a Three Dimensional Numerical Model (3차원 수치모형을 이용한 방조제 끝막이 구간의 수리특성분석(수공))

  • 강민구;박승우;임상준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.405-411
    • /
    • 2000
  • This study reviews qualitatively the flow characteristics around th tidal gap during seadike closures using a three-dimensional model for shallow water equations. The Princeton Ocean Model(POM) was adapted and applied to the Sihwa Seadike which was closed in 1994. The simulated flow patterns around the gap showed that tidal velocities increase with the cross-sectional area during ebb tide. The accelerated flow extended to wider zones passing the gap, and shock waves were generated. Vertical tidal velocity profiles were affected as the bottom scours developed beyond normal conditions.

  • PDF

A Study on the Understanding of the Base Area of Solid Figures in the Elementary Mathematics (초등수학에서 입체도형의 밑넓이 이해에 대한 연구)

  • Kim, Sung Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.2
    • /
    • pp.167-191
    • /
    • 2014
  • In this study, we investigate the term-sets of 'base' or 'bottom': 'the bottom side of a polygon' and 'the base side (of a geometrical figure)'. And we study the concept of 'the base area' in the solid figures and the formula of 'the bottom dimensions'. We start from the 6th grade math problem: 'Find the bottom dimension of the rectangular.' The primary answer is that it does not use the term('the bottom dimensions') in the elementary mathematics. However, in the middle school mathematics, 'the base area' is used as means of 'the area of one bottom side', which is not explained anywhere from the elementary mathematics to middle school mathematics. In addition, the base is defined and 'the surface area' and 'the side area' is taught in the elementary mathematics, so we naturally think of 'the base area'. Therefore we first investigate the term-sets of 'base' or 'bottom' which has two elements: 'the bottom side of a polygon' and 'the base side (of a geometrical figure)'. Next we discuss 'the base area' through curriculum and textbooks, dictionary definitions and so on. In addition, we survey pre-service teachers and teachers about the solid figures and analyse the understanding of 'the base side' and 'the base area' comparatively. In particular, we compare the changes and the tendency of correct answers from the first question to the last question. As a result, we verify 'the cognitive gap' between the elementary mathematics and the middle school mathematics, we suggest the teaching of 'the base area' and succession subjects to teach figure domain in the elementary mathematics.

  • PDF