• Title/Summary/Keyword: Borosilicate

Search Result 209, Processing Time 0.03 seconds

Chemical Durability of Simulated Waste Glasses (모의 폐기물유리의 화학적 내구성)

  • 현상훈;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.521-531
    • /
    • 1989
  • The dependence of the chemical durability of simulated waste glasses containing the simplified waste similar to the SRP waste on compositions of host glasses, amounts of waste loading, and kinds of leachants has been investigated as a basic study on the waste immobilization through vitrification. The maximum limit of the amount of waste loading for glassforming with the host sodium borosilicate glasses selected in this study was 50wt%. The chemical durability of waste glasses whose host glass belonged to the immiscible composition region was much higher than that of waste glasses whose host glass belonged to the miscible composition region. The former waste glass showed lower chemical durability in deionized and silicate waters than in brine, while the latter glass showed the lowest chemical durability in deionized and silicate waters than in brine, while the latter glass showed the lowest chemical durability in silicate water. It was also observed that the total leaching rates in brine were noticeably small in comparison with those in other solutions. The composition of the host borosilicate glass which was suitable for the treatment of the waste through vitrification was found to be 25 Na2O-5B2O3-70SiO2(wt.%).

  • PDF

Fabrication of Electrostatic Chucks Using Borosilicate Glass Coating as an Insulating Layer (붕규산염 유리를 절연층으로 도포한 정전척의 제조)

  • 방재철;이지형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.390-393
    • /
    • 2001
  • This study demonstrated the feasibility of tape casting method to fabricate soda borosilicate glass-coated stainless steel electrostatic chucks(ESC) for low temperature semiconductor processes. The glass coatings on the stainless steel substrates ranged from 100 $\mu\textrm{m}$ to 150 $\mu\textrm{m}$ thick. The adhesion of the glass coatings was found to be excellent such that it was able to withstand moderate impact tests and temperature cycling to over 300$^{\circ}C$ without cracking and delamination. The electrostatic clamping pressure generally followed the theoretical voltage-squared curve except at elevated temperatures and higher applied voltages when deviations were observed to occur. The deviation is due to increased leakage current at higher temperature and applied voltage as the electrical resistivity drops.

  • PDF

Solid-State $^1H$ and $^{29}Si$ NMR Studies of Silicate and Borosilicate Gel to Glass Conversion

  • 양경화;우애자
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.696-699
    • /
    • 1996
  • Silicate and borosilicate gels were prepared by the sol-gel process and thermally treated in the 150-850 ℃ temperature range. Solid-state 1H MAS and 29Si CP/MAS NMR spectroscopy were used to investigate the effects of heat treatments on the silicate gel to glass conversion process. The 1H NMR isotropic chemical shifts and the relative intensities of hydrogen bonded and isolated silanol groups have been used to access the information concerning the dehydration process on the silicate gel surface. The 29Si NMR isotropic chemical shifts affected by the local silicon environment have been used to determine the degree of crosslinking, i.e. the number of siloxane bonds. These NMR results suggest that the silicate gel to glass conversion process is occurred by two stages which are dependent on the temperature; (1) the formation of particles up to 450 ℃ and (2) the formation of large particles by aggregation of each separated single particle above 450 ℃. In addition, the effects of B atom on the formation of borosiloxane bonds in borosilicates have been discussed.

Low Temperature Sintering and Dielectric Properties of BiNbO4 and ZnNb2O6 Ceramics with Zinc Borosilicate Glass

  • Kim, Kwan-Soo;Kim, Shin;Yoon, Sang-Ok;Park, Jong-Guk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.201-205
    • /
    • 2007
  • Low temperature sintering behavior and microwave dielectric properties of the $BiNbO_{4^-}$ and the $ZnNb_2O_{6^-}zinc$ borosilicate glass(ZBS) systems were investigated with a view to applying the composition to LTCC technology. The addition of $10{\sim}30$ wt% ZBS in both systems ensured successful sintering below $900^{\circ}C$. For the $BiNbO_{4^-}ZBS$ system, the sintering was completed when 15 wt% ZBS was added whereas 25 wt% ZBS was necessary for the $ZnNb_2O_{6^-}zinc$ system. Secondary phase was not observed in the $BiNbO_{4^-}ZBS$ system but a small amount of $ZnNb_2O_6$ with the willemite structure as the secondary phase was observed in the $ZnNb_2O_{6^-}ZBS$ system. In terms of dielectric properties, the application of the $BiNbO_{4^-}$ and the $ZnNb_2O_{6^-}ZBS$ systems sintered at $900^{\circ}C$ to LTCC were shown to be appropriate; $BiNbO_{4^-}15$ wt% ZBS($\varepsilon_r=25,\;Q{\times}f\;value=3,700GHz,\;\tau_f=-32ppm/^{\circ}C$) and $ZnNb_2O_{6^-}25$ wt% ZBS($\varepsilon_r=15.8,\;Q{\times}f\;value=5,400GHz,\;\tau_f=-98ppm/^{\circ}C$).

Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering (고상소결에 의한 방사성 희토류산화물의 고화)

  • Ahn, Byung-Gil;Park, Hwan-Seo;Kim, Hwan-Young;Lee, Han-Soo;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare eath oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix(ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilzed with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

Mechanism of Removal of Cr(VI) Ions from Solution by Borosilicate Glasses Containing Alkaline Earth Oxides (알칼리토 금속산화물이 함유된 붕규산염계 유리를 이용한 용액 중 Cr6+ 이온 제거 기구)

  • Back, Il-Hee;Lim, Hyung-Bong;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.222-227
    • /
    • 2011
  • The hexavalent chromium ions in wastewater are highly toxic chemicals even at low concentrations. It causes serious diseases, such as cancer, skin disease, digestive trouble et. al. In this study, $Cr^{6+}$ ions were removed by using borosilicate glasses. Various glasses system with different compositions were prepared and then reacted in a solution contaning $Cr^{6+}$ ions. After the reaction, the concentration of the $Cr^{6+}$ ions remained in the solution was measured by ICP-OES. The reacted surface of the glasses was also analyzed by using a XRD, SEM, and EDS. When $Na_2O-RO-SiO_2-B_2O_3$ (RO=MgO, CaO, SrO, BaO) glasses were reacted with a solution containing $Cr^{6+}$ ions, the optimum removal efficiency of $Cr^{6+}$ ions was observed in the BaO glass. $Ba^{2+}$ ions leached out of these glasses combine with $Cr^{6+}$ ions in a solution to form $BaCrO_4$ crystals on the glass surface. In this manner, the $Cr^{6+}$ ions can be removed from the solution. It is conceivable that $Ba^{2+}$ ions are reacted with $Cr^{6+}$ ions in a solution immedeately after leaching out of the glasses. The pH of the solution for optimum removal of $Cr^{6+}$ ions were 3.0~5.0.

Blackening of Inner Glass Surface in Fluorescent Lamps for LCD Backlight (LCD 백라이트용 형광램프의 흑화 현상)

  • Hwang, Ha-Chung;Jeong, Jong-Mun;Kim, Jung-Hyun;Kim, Dong-Jun;Bong, Jae-Hwan;Chung, Jae-Yoon;Koo, Je-Huan;Cho, Guang-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.481-486
    • /
    • 2008
  • The different degrees of blackening were observed at the inner surface of borosilicate, soda-lime, and aluminosilicate glass tubes having different sodium (Na) contents. The sodium contents ($Na_2O$) within the borosilicate, soda-lime, and aluminosilicate glass tubes were found to be 4%, 14%, and 0.06%, respectively. The degree of blackening was shown to increase as the sodium content within the glass of the fluorescent lamp containing Ne+Ar+Hg gas mixture. Higher degree of blackening was observed from the inner surface of the glass tube coated with $Y_2O_3$. The blackening was found to be originated from the amalgam of $NaHg_2$ generated by the chemical reaction between the mercury ions within the discharge gas and sodium within the glass tube during operation.

Effect of CaO on the antibacterial property of zinc borosilicate glasses (Zinc borosilicate 유리의 CaO 첨가에 따른 항균력 개선 효과 검증)

  • Minsung Hwang;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.187-190
    • /
    • 2023
  • In this study, antibacterial glasses were developed by the addition of CaO in ZnO-Na2O-B2O3-SiO2 glass system. The effect of the addition of CaO on the thermal properties, dissolution properties, surface zeta potential and antibacterial activity were analyzed. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of 30ZnO-xCaO-20Na2O-30B2O3-(20-x)SiO2 (x = 0, 2, 4, 6, 8, 10 mol%). It was confirmed that the glass transition temperature decreased as the CaO content increased. The amount of released Zn2+ ions and surface zeta potential of glass samples increased with increasing CaO concentration. For these reasons, the antibacterial activity was dramatically improved. By the addition of CaO, we could successfully develop an antibacterial glass with 99.9 % antibacterial activity against both Escherichia coli and Staphylococcus aureus.

Physico-Chemical Properties of $Tl_2O-B_2O_3-SiO_2$ Glasses and Their Phase Separations ($Tl_2O-B_2O_3-SiO_2$ 系 유리의 物理化學的 性質 및 그의 分相)

  • Kim, Kee-Hyong
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.65-80
    • /
    • 1968
  • The physico-chemical properties of nine selected thallium borosilicate glasses and other 21 supplementary compositions were investigated. Their composition-property curves are found to be in many respects analogous to those of other borosilicate glasses containing lithia, soda, and lead oxide. It is indicated that certain minima found in the composition-property curves of thallium borosilicate glasses might be caused by a change in boron coordination as has been observed to occur in the $Na_2O-B_2O_3-SiO_2$ glasses. Typical effects of thallium ions on the borosilicate glass are summarized as follows: 1) Addition of thallium ions increased density, refractive index, water solubility, linear coefficient of thermal expansion, and dielectric constant. 2) Increased concentration of thallium decreased the softening point of the glasses, caused fluorescence under ultraviolet radiation and smeared out the absorption edges up to $15{\mu}$ in the infrared region. An extensive liquid immiscibility was found by replication electron microscope technique in the $Tl_2O-B_2O_3-SiO_2$ system. The immiscibility covers a composition range roughly from 55 wt. % Tl2O to the binary system $B_2O_3-SiO_2.$ By acid treatment, it was found that the immiscible glass consists of separate silica-rich and boron-rich phases.

  • PDF