• 제목/요약/키워드: Boron free

검색결과 63건 처리시간 0.022초

Ni계 합금으로 브레이징된 Fe-Cr-Al 합금 접합부의 주기산화거동 (Cyclic Oxidation Behavior of Fe-Cr-Al Joint Brazed with Nickel-Base Filler Metal)

  • 문병기;최철진;박원욱
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.141-149
    • /
    • 1999
  • Brazing of Fe-Cr-Al alloy was carried out at $1200^{\circ}C$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si-Fe base alloy} and MBF-50 foil (Ni-Cr-Si-B). The effect of boron content on the stability of oxide scale on the brazed joint was investigated by means of cyclic oxidation test performed at $1050^{\circ}C$ and $1200^{\circ}C$. Apparently, the joints brazed with MBF-50 containing boron showed relatively stable oxidation rates compared to boron-free BNi-5 at both temperatures. However, it was considered that the slower weight loss of MBF-50 brazed specimen wasn’t resulted from the low oxidation rate but from the spallation of oxide layer. The oxide layer consisted of thick spinel oxide on the surface and $Al_2 O_3$ internal oxide layer along the interface between mother alloy and braze, the mother alloy was also eroded seriously by the formation of spinel oxides such as $FeCr_2 O_4$ and $NiCr_2 O_4$ on the surface, likely to be induced by the change of oxide forming mechanism due to diffusion of boron from the braze. On the contrary, the joint brazed with BNi-5 showed the good oxidation resistance during the cyclic oxidation test. It seems that the oxidation can be retarded by the formation of stable $Al_2 O_3$ layer at the surface.

  • PDF

마이크로 머시닝을 위한 고농도로 붕소가 도핑된 실리콘 층의 부정합 전위의 억제 (Suppression of misfit dislocations in heavily boron-doped silicon layers for micro-machining)

  • 이호준;김하수;한철희;김충기
    • 전자공학회논문지A
    • /
    • 제33A권2호
    • /
    • pp.96-113
    • /
    • 1996
  • 고농도로 붕소가 도핑된 실리콘층 내에 존재하는 부정합 전위는 웨이퍼 가장자리에서 발생됨을 알았으며, 이 층을 도핑되지 않은 영역으로 둘러쌓음으로써 부정합 전위가 억제된 고농도로 붕소가 도핑된 실리콘층을 형성할 수 있었다. 이를 이용하여 부정합 전위가 없는 고농도로 붕소가 도핑된 실리콘 멤브레인을 제작하였으며, 이 멤브레인의 표면 거칠기 및 파괴 강도 그리고 잔류 인장 응력을 각각 20$\AA$ 1.39${\times}10^{10}dyn/cm^{2}$ 그리고 2.7${\times}10^{9}dyn/cm^{2}$로 측정되었다. 반면에 부정합 전위를 포함하는 기존 멤브레인은 각각 500$\AA$ 8.27${\times}10^{9}dyn/cm^{2}$ 그리고 9.3${\times}10^{8}dyn/cm^{2}$로 측정되었으며, 두 멤브레인의 이러한 차이는 부정합 전위에서 기인함을 알았다. 측정된 두 멤브레인의 Young's 모듈러스는 1.45${\times}10^{12}dyn/cm^{2}$로 동일하게 나타났다. 또, 도핑 농도 1.3${\times}10^{12}dyn/cm^{3}$에 대한 고농도로 붕소가 도핑된 실리콘의 유효 격자 상수 및 기존 멤브레인의 평면적 격자 상수 그리고 기존 멤브레인 내의 부정합 전위의 밀도는 각각 5.424$\AA$ 5.426$\AA$ 그리고 2.3${\times}10^{4}$/cm 로 추출되었으며, 붕소가 도핑된 실리콘의 부정합 계수는 1.04${\times}10^{23}$/atom으로 추출되었다. 한편 별도의 추가적인 공정없이 일반적인 에피 성장법을 사용하여 고농도로 붕소가 도핑된 실리콘층 위에 부정합 전위가 없는 에피 실리콘을 성장시켰으며, 이 에피 실리콘의 결정성은 매우 양호한 것으로 밝혀졌다. 또 부정합 전위가 없는 에피 실리콘에 n+/p 게이트 다이오드를 제작하고 그 전압-전류 특성을 측정한 결과 5V의 역 바이어스에서 0.6nA/$cm^{2}$의 작은 누설 전류값을 나타내었다.

  • PDF

Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials

  • DEN, Muhammed Kamil O;ONGAR, Sezen KUC UKC
    • Advances in environmental research
    • /
    • 제8권1호
    • /
    • pp.23-38
    • /
    • 2019
  • In this study, Malachite Green (MG) dye removal from synthetic wastewaters by adsorption process using raw boron enrichment waste (BEW) and it's modifications (with acid and ultrasound) were aimed. 81% MG removal was obtained by BEW at optimum equilibrium conditions (time: 40 min., dosage: 500 mg/dm3, pH: 5-6, speed: 200 rpm, 298 K). MG removal from wastewaters using acid modified boron enrichment waste (HBEW) was determined as 82% at optimum conditions (time: 20 min., dosage: 200 mg/dm3, pH: 10, speed: 200 rpm, 298 K). For ultrasound modified BEW (UBEW), the highest MG removal percent was achieved as 84% at optimum conditions (time: 30 min, dosage: 375 mg/ dm3, pH: 8, speed: 200 rpm, 298 K). The equilibrium data of Malachite Green was evaluated for BEW, HBEW and UBEW adsorbents by using sorption isotherms such as Langmuir, Freundlich and Temkin models, out of which Langmuir model (R2 = 0.971, 0.987 and 0.984) gave better correlation and maximum adsorption capacity was found to be 147.05, 434.78 and 192.30 mg/g, respectively. The adsorption kinetics followed the pseudo-second-order kinetic equation for sorption of MG onto wastes. A look at thermodynamic data reveals that natural sorption is spontaneous and endothermic because of free negative energy exchange and positive change in enthalpy, respectively. The results indicated that boron enrichment waste, and HCl and ultrasound-modified boron enrichment waste served as good alternative adsorbents in dye removal from wastewater.

공침법을 통한 Ni-rich NCMA 합성과 붕소와 주석 도핑을 통한 사이클 특성 향상 (Synthesis of Ni-rich NCMA Precursor through Co-precipitation and Improvement of Cycling through Boron and Sn Doping)

  • 전형권;홍순현;김민정;구자훈;이희상;최규석;김천중
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.210-215
    • /
    • 2022
  • Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.

Chlorella 의 물질대사에 미치는 미양원소의 결핍효과 1 (제 1 ) -생 및 광합성 에 관하여- (Effect of micronutritional-element deficienies on the metabolism of Chlorella cells. (I) -On the growth rate, respiation and photosynthesis-)

  • 이영록;진평;심웅섭
    • 미생물학회지
    • /
    • 제5권1호
    • /
    • pp.15-19
    • /
    • 1967
  • Chlorella ellipsoidea cells were cultured in an iron, copper, zinc, manganese, molybdenum or boron-free medium. Physiological activities such as growth rate, reproduction, endogenous and glucose respiration, photosynthetic activity and biosythesis of chlorophyll of the micro-element definition cells were measured. It generally, growth rate, respiratory and photosynthetic activities, and biosynthesis of chlorophyll of the micro-element deficient cells decreased more or less, compared with those of the normal cells. The growth of the algal cells in an iron-free medium were retarded severely with the chlorosis, and the photosynthetic activity of the cells decreased remarkably even though the low content of chlorophyll in the cells owing to the iron-deficiency is considered. Therefore, it is deduced that iron takes part in the photosynthetic process itself, possibly by its participation in the photo phosphorylation coupled with electron transport. Respiratory activity of boron-deficient cells showed the most severe decrease whereas those of the molybdenum-deficient cells showed very slight decrease in spite of severe growth retardation.

  • PDF

Multi-batch core design study for innovative small modular reactor based on centrally-shielded burnable absorber

  • Steven Wijaya;Xuan Ha Nguyen;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.907-915
    • /
    • 2024
  • Various core designs with multi-batch fuel management (FM) are proposed and optimized for an innovative small modular reactor (iSMR), focusing on enhancing the inherent safety and neutronic performance. To achieve soluble-boron-free (SBF) operation, cylindrical centrally-shielded burnable absorbers (CSBAs) are utilized, reducing the burnup reactivity swing in both two- and three-batch FMs. All 69 fuel assemblies (FAs) are loaded with 2-cylindrical CSBA. Furthermore, the neutron economy is improved by deploying a truly-optimized PWR (TOP) lattice with a smaller fuel radius, optimized for neutron moderation under the SBF condition. The fuel shuffling and CSBA loading patterns are proposed for both 2- and 3-batch FM with the aim to lower the core leakage and achieve favorable power profiles. Numerical results show that both FM configurations achieve a small reactivity swing of about 1000 pcm and the power distributions are within the design criteria. The average discharge burnup in the two-batch core is comparable to three-batch commercial PWR like APR-1400. The proposed checker-board CR pattern with extended fingers effectively assures cold shutdown in the two-batch FM scenario, while in the three-batch FM, three N-1 scenarios are failed. The whole evaluation process is conducted using Monte Carlo Serpent 2 code in conjunction with ENDF/B-VII.1 nuclear library.

이종 원자 도핑 탄소 나노재료를 이용한 PEMFC Cathode용 촉매 합성 및 평가 (Heteroatom-doped carbon nanostructures as non-precious cathode catalysts for PEMFC)

  • 조가영;상가라주 샨무감
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.406-409
    • /
    • 2012
  • Recently, enormous research efforts have been focused on the development of non-precious catalysts to replace Pt for electrocatalytic oxygen reduction reaction (ORR), and to reduce the cost of proton exchange membrane fuel cells (PEMFCs). In recent years, heteroatom (N, B, and P) doped carbon nanostructures have been received enormous importance as a non-precious electrode materials for oxygen reduction. Doping of foreign atom into carbon is able to modify electronic properties of carbon materials. In this study, nitrogen and boron doped carbon nanostructures were synthesized by using a facile and cost-effective thermal annealing route and prepared nanostructures were used as a non-precious electrocatalysts for the ORR in alkaline electrolyte. The nitrogen doped carbon nanocapsules (NCNCs) exhibited higher activity than that of a commercial Pt/C catalyst, excellent stability and resistance to methanol oxidation. The boron-doped carbon nanostructure (BC) prepared at $900^{\circ}C$ showed higher ORR activity than BCs prepared lower temperature (800, $700^{\circ}C$). The heteroatom doped carbon nanomaterials could be promising candidates as a metal-free catalysts for ORR in the PEMFCs.

  • PDF

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Nuclear Design Characteristics of SMART

  • Lee, Chungchan;Park, Sang-Yoon;Lee, Ki-Bog;Zee, Sung-Quun;Chang, Moon-Hee
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.19-26
    • /
    • 1998
  • Nuclear design bases for System-Integrated Modular Advanced ReacTor(SMART) core are presented. Based on the proposed design bases, a SMART core loading pattern is constructed and its nuclear characteristics are studied. The proposed core loading pattern satisfies 3-year cycle length and soluble boron-free operation requirements at any time during the cycle

  • PDF

필러 네트워크 형성 및 배향이 복합소재 열전도도와 산소투과도에 미치는 영향 고찰 (Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites)

  • 신하은;김채빈
    • Composites Research
    • /
    • 제34권1호
    • /
    • pp.63-69
    • /
    • 2021
  • 일체형 방열 및 기체 차단 재료 개발을 위하여 신규 고분자를 합성하고 판상형 육방정 질화 붕소(hBN) 필러를 포함하는 복합소재를 제조하였다. 복합소재는 필러의 크기 및 함량에 따라 열전도도 및 산소투과도 조절이 가능하였다. 복합소재는 최대 28.0 W·m-1·K-1의 높은 열전도도를 지녔으며 필러 미포함 샘플 대비 산소투과도는 62% 감소하였다. 열전도도 및 기체투과도 실험 측정값과 모델 예측값 비교를 통해 복합소재 내 필러의 종횡비를 계산하였다. 이러한 결과를 토대로 높은 열전도도 및 낮은 기체투과도는 필러 간 효과적인 네트워크 형성 때문이며 이는 복합소재 제조 시 전단 응력 극대화가 가능한 신규 수지의 특성으로부터 유래된것으로 사료된다. 또한, 열전도도로부터 계산된 필러 종횡비와 산소 투과도로부터 계산된 필러 종횡비 값이 서로 다름을 확인하였고 이에 관련하여 복합소재에서 열 전달 및 기체 투과 메커니즘에 대하여 고찰하였다. 본 연구에서 개발된 높은 열전도도 및 낮은 산소투과도를 갖는 고분자 복합소재는 전자 제품의 일체형 방열 및 산화 방지 재료로 사용 될 수 있다.