• Title/Summary/Keyword: Boron compounds

Search Result 88, Processing Time 0.027 seconds

Discovery of Giant Magnetostriction in Amorphous RFe$_2$B (R = Sm, Tb) Alloys

  • Kim, Jai-Young
    • Journal of Magnetics
    • /
    • v.1 no.2
    • /
    • pp.64-68
    • /
    • 1996
  • Compared with the conventional magnetostriction in Ni alloys which are in the order of several tens ppm (Parts Per Million =10-6), RFe$_2$(R = rare earth element) Laves Phase intermetallic compounds show large saturation magnetostriction in the range of a few thousands ppm. However, the large external magnetic field necessary to obtain saturatio magnetostriction has due to large magnetocrystalline anisotropy energy restrained the applicationof magnetostriction materials in RFe$_2$intermetallic compounds. As a result of its solution, the largest published value of effective giant magnetostriction in a low external magnetic field (less than a few hundred Oe) is reported in this paper by means of amorphisation of RFe$_2$intermetallic compounds with the addition of boron, as a half metal. For the amorphous (SmFe$_2$)0.97 B0.03 alloys, the effective magnetostriction of -545 and -610 $\times$ 10-6 is obtained at 400 and 1,000 Ie, respectively. Moreover, the effective magnetostriction of 590 and 630$\times$10-6 in the amorphous (TbFe$_2$)0.98 B0.02 alloys is also found at 400 and 1,000 Oe, respectively. This result will provide a clue to understanding the effect of half metal on anomalous increase of the effective giant magnetostriction and attract the great attention for magnetostriction applications.

  • PDF

Synthesis of New BF2-Chelate Compounds (새로운 BF2-Chelate 화합물들의 합성)

  • Kim, Jung-Hwan;Kim, Yeung-Eun
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.4
    • /
    • pp.379-384
    • /
    • 2004
  • 4-pyrimidylideneacetonitrile derivatives containing $BF_2$-chelate have been synthesized from H-chelates of 4-pyrimidylideneacetonitrile derivatives and boron trifluoride diethyl etherate. These H-chelates were prepared by the electrophilic substitution of 2-cyanomethylpyridine derivatives with electrophiles such as 4,6-dichloropyrimidine, 4,6-dichloro-2-methylpyrimidine, 4,6-dichloro-2-heptadecylpyrimidine, 4,6-dichloro-2-phenylpyrimidine, 4,6-dichloro-5-phenylpyrimidine and 4,6-dichloro-2,5-diphenylpyrimidine. Structures of the target molecules were identified by spectra methods.

Comparative analysis of two methods of laser induced boron isotopes separation

  • K.A., Lyakhov;Lee, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.407-408
    • /
    • 2011
  • Natural boron consists of two stable isotopes 10B and 11B with natural abundance of 18.8 atom percent of 10B and 81.2 atom percent of 11B. The thermal neutron absorption cross-section for 10B and 11B are 3837 barn and 0.005 barn respectively. 10B enriched specific compounds are used for control rods and as a reactor coolant additives. In this work 2 methods for boron enrichment were analysed: 1) Gas irradiation in static conditions. Dissociation occurs due to multiphoton absorption by specific isotopes in appropriately tuned laser field. IR shifted laser pulses are usually used in combination with increasing the laser intensity also improves selectivity up to some degree. In order to prevent recombination of dissociated molecules BCl3 is mixed with H2S 2) SILARC method. Advantages of this method: a) Gas cooling is helpful to split and shrink boron isotopes absorption bands. In order to achieve better selectivity BCl3 gas has to be substantially rarefied (~0.01%-5%) in mixture with carrier gas. b) Laser intensity is lower than in the first method. Some preliminary calculations of dissociation and recombination with carrier gas molecules energetics for both methods will be demonstrated Boron separation in SILARC method can be represented as multistage process: 1) Mixture of BCl3 with carrier gas is putted in reservoir 2) Gas overcooling due to expansion through Laval nozzle 3) IR multiphoton absorption by gas irradiated by specifically tuned laser field with subsequent gradual gas condensation in outlet chamber It is planned to develop software which includes these stages. This software will rely on the following available software based on quantum molecular dynamics in external quantized field: 1) WavePacket: Each particle is treated semiclassicaly based on Wigner transform method 2) Turbomole: It is based on local density methods like density of functional methods (DFT) and its improvement- coupled clusters approach (CC) to take into account quantum correlation. These models will be used to extract information concerning kinetic coefficients, and their dependence on applied external field. Information on radiative corrections to equation of state induced by laser field which take into account possible phase transition (or crossover?) can be also revealed. This mixed phase equation of state with quantum corrections will be further used in hydrodynamical simulations. Moreover results of these hydrodynamical simulations can be compared with results of CFD calculations. The first reasonable question to ask before starting the CFD simulations is whether turbulent effects are significant or not, and how to model turbulence? The questions of laser beam parameters and outlet chamber geometry which are most optimal to make all gas volume irradiated is also discussed. Relationship between enrichment factor and stagnation pressure and temperature based on experimental data is also reported.

  • PDF

Studies on Preparation of Boron Compounds from Colemanite Ore : Preparation of Boric Acid and Reaction Mechanism (I) (Colemanite 광물로부터 붕소화합물의 제조에 관한 연구 : 붕산제조 및 반응기구 (I))

  • Choi, Byung-Hyun;Lim, Hyung-Mi;Jee, Mi-Jung;Jang, Jae-Hun;Paik, Song-Hoo;Lee, Mi-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.756-765
    • /
    • 2004
  • We present extraction process and reaction mechanism of boric acid from one of calcium borate ores, colemanite by reaction with sulfuric acid. Colemanite has been fully decomposed under pH 5 with sufficiency amount of sulfuric acid, more than the amount stoichiometrically required. Calcium sulfate was separated out, leaving boron in the liquid phase after sulfuric acid addition. The extraction process of boric acid was affected by dissolution temperature and time, amount of sulfuric acid and ammonium sulfate, pH and a degree of concentration before recrystallization. The $SiO_2$ of the impurities which colemanite contains was insoluble so that it was separated out with calcium sulfate from liquid phase. The species of $CaO,\;Al_2O_3,\;Fe_2O_3,\;MgO$ were remained in a liquid phase after reaction with sulfuric acid. These impurities were separated out by addition of ammonia to the liquid phase, funhermore, boric acid was produced by process of pH adjustments and acidification, concentration, and recrystallization.

Smoke Hazard Assessment of Cypress Wood Coated with Boron/Silicon Sol Compounds (붕소/실리콘 졸 화합물로 도포된 편백 목재의 연기유해성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this study, boron/silicon sol compounds were applied to wood for construction and durable materials, and fire risks were investigated in terms of smoke performance index (SPI), smoke growth index (SGI), and smoke intensity (SI). The compound was synthesized by reacting tetraethoxyorthosilicate with boric acid and boronic acid derivatives. Smoke characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment for cypress wood. The fire intensity fixed the external heat flux at 50 kW/㎡. The smoke performance index measured after the combustion reaction increased between 13.4% and 126.7% compared with cypress wood. The fire risk due to the smoke performance index decreased in the order of cypress, phenylboronic acid/silicon sol (PBA/Si), (2-methylpropyl) boronic acid/silicon sol (IBBA/Si), boric acid/silicon sol (BA/Si). The smoke growth index decreased between 12.0% and 57.5% compared to the base specimen. The risk of fire caused by the smoke growth index decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si. The fire risk due to smoke intensity decreased between 3.2% and 57.8%, and in the order of cypress, PBA/Si, IBBA/Si, BA/Si. COpeak concentrations ranged between 85 and 93 ppm, and decreased between 37% and 43% compared to the base specimen. A comprehensive assessment of the fire risk on smoke hazards decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si.

Study on Reaction Behavior of Mg-FeB Phase for Rare Earth Elements Recovery from End-of-life Magnet

  • Sangmin Park;Dae-Kyeom Kim;Rongyu Liu;Jaeyun Jeong;Taek-Soo Kim;Myungsuk Song
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.101-106
    • /
    • 2023
  • Liquid metal extraction (LME), a pyrometallurgical recycling method, is popular owing to its negligible environmental impact. LME mainly targets rare-earth permanent magnets having several rare-earth elements. Mg is used as a solvent metal for LME because of its selective and eminent reactivity with rare-earth elements in magnets. Several studies concerning the formation of Dy-Fe intermetallic compounds and their effects on LME using Mg exist. However, methods for reducing these compounds are unavailable. Fe reacts more strongly with B than with Dy; B addition can be a reducing method for Dy-Fe intermetallic compounds owing to the formation of Fe2B, which takes Fe from Dy-Fe intermetallic compounds. The FeB alloy is an adequate additive for the decomposition of Fe2B. To accomplish the former process, Mg must convey B to a permanent magnet during the decomposition of the FeB alloy. Here, the effect of Mg on the transfer of B from FeB to permanent magnet is observed through microstructural and phase analyses. Through microstructural and phase analysis, it is confirmed that FeB is converted to Fe2B upon B transfer, owing to Mg. Finally, the transfer effect of Mg is confirmed, and the possibility of reducing Dy-Fe intermetallic compounds during LME is suggested.

Thirty Six Years of Research on the Selective Reduction and Hydroboration

  • Cha, Jin-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1808-1846
    • /
    • 2011
  • From 1975 to 2011, for thirty six years, the author and his collaborators have developed a variety of reducing and hydroborating agents, and applied them to organic synthesis, which involves the 1,2-reduction of ${\alpha}$,${\beta}$-unsaturated carbonyl compounds, stereoselective reduction of cycloalkanones, regioselective ring-opening of epoxides, partial reduction of carboxylic acid derivatives to aldehydes, regioselective addition to carbon-carbon multiple bonds, etc. by utilizing metal hydrides and the newly-devised the Meerwein-Ponndorf-Verley (MPV) type reagents. Such developments provide a new synthetic methodology making possible valuable selective reductions and hydroborations, not practical previously.

A Versatile Synthesis of O-Desmethylangolensin Analogues from Methoxy-Substituted Benzoic Acids

  • Hong, Hyo Jeong;Lee, Jae In
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.569-574
    • /
    • 2014
  • The synthesis of O-desmethylangolensin (O-DMA) analogues from methoxy-substituted benzoic acids was described. Treatment of methoxy-substituted benzoic acids with 2 equiv of ethyllithium afforded methoxypropiophenones, which were subsequently transformed to ethyl 2-(methoxyphenyl)propionates via 1,2-rearrangement of the methoxyphenyl group using $Pb(OAc)_4/HClO_4$ in triethyl orthoformate. After hydrolysis with KOH, the 2-(methoxyphenyl)propionic acids were reacted with di-2-pyridyl carbonate to afford 2-pyridyl 2-(methoxyphenyl)propionates, which were acylated with methoxy-substituted phenylmagnesium bromides to give methoxy-${\alpha}$-methyldesoxybenzoins. The methoxy groups of these compounds were selectively or fully demethylated using boron tribromide to give diverse O-DMA analogues in high yields.

Structures and Formation Energies of LixC6 (x=1-3) and its Homologues for Lithium Rechargeable Batteries

  • Doh, Chil-Hoon;Han, Byung-Chan;Jin, Bong-Soo;Gu, Hal-Bon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2045-2050
    • /
    • 2011
  • Using first principles density functional theory the formation energies of various binary compounds of lithium graphite and its homologues were calculated. Lithium and graphite react to form $Li_1C_6$ (+141 mV) but not form $LiC_4$ (-143 mV), $LiC_3$ (-247 mV) and $LiC_2$ (-529 mV) because they are less stable than lithium metal itself. Properties of structure and reaction potentials of $C_5B$, $C_5N$ and $B_3N_3$ materials as iso-structural graphite were studied. Boron and nitrogen substituted graphite and boron-nitrogen material as a iso-electronic structured graphitic material have longer graphene layer spacing than that of graphite. The layer spacing of $Li_xC_6$, $Li_xC_5B$, $Li_xC_5N$ materials increased until to x=1, and then decreased until to x=2 and 3. Nevertheless $Li_xB_3N_3$ has opposite tendency of layer spacing variation. Among various lithium compositions of $Li_xC_5B$, $Li_xC_5N$ and $Li_xB_3N_3$, reaction potentials of $Li_xC_5B$ (x=1-3) and $Li_xC_5$ (x=1) from total energy analyses have positive values against lithium deposition.

Preparation of Methylenediphenyldiurethanes by the Acid Rearrangement of [(Ethoxycarbonyl)phenylaminomethyl] phenylcarbamic Acid Ethyl Esters ([(에톡시카르보닐)페닐아미노메틸]페닐카르바민산 에틸에스테르의 산 재배열에 의한 메틸렌 디페닐디우레탄의 제조)

  • Park, Nae-Joung
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 1996
  • The rearrangement of [(ethoxycarbonyl)phenylaminomethyl]phenylcarbamic acid ethyl esters(N-benzyl compounds) to methylenediphenyldiurethanes(MDU) in sulfuric acid, sulfuric acid-absolute ethanol solvent system, and sulfuric acid-nitrobenzene solvent system, and boron trifluoride at $90^{\circ}C$ was studied. The production of MDU was the highest in sulfuric acid-nitrobenzene system giving 64% MDU yield, of which 58% was 4,4'-MDU. The simultaneous condensation of EPC and formaldehyde and rearrangement to MDU were studied in the presence of different amounts of sulfuric acid, trifluoroacetic acid, and boron trifluoride at $70^{\circ}C$. Though 17mmol of sulfuric acid with 30mmol of EPC produced the highest MDU, the MDU yield was much lower than that from separate condensation and rearrangement reaction.

  • PDF