• 제목/요약/키워드: Boron based

검색결과 222건 처리시간 0.032초

전기산화공법을 이용한 고농도폐수 처리공정의 모델링 및 최적화 (Modeling and Optimization of High Strength Wastewater Treatment Using the Electro Oxidation Process)

  • 이홍민;이상선;황성원;진동복
    • Korean Chemical Engineering Research
    • /
    • 제54권3호
    • /
    • pp.340-349
    • /
    • 2016
  • 본 연구에서는 정유산업의 유지 및 보수기간에 배출되는 고농도폐수의 COD (Chemical Oxygen Demand)를 효과적으로 제거하기 위해 전기산화공법을 적용하였다. 우선 산업에서 배출되는 실제 폐수를 처리하기 위하여 BDD전극을 개발하고, 개발된 전극을 이용하여 전류밀도, pH, 전해질농도, 반응시간 등과 같은 다양한 운전조건하에 실험을 진행하였다. 둘째, 이러한 실험결과를 이용하여 전기분해의 kinetic parameter를 산출한 후에, 이를 토대로 전기산화 처리설비를 수학적으로 모델링 하였다. 마지막으로, 기존에 정상운전 조건 시 사용하던 저 농도 폐수를 처리하는 공정의 유입조건에 맞추기 위하여 전기산화 처리설비의 설계 및 운전의 다양한 변수들을 최적화함으로써 보다 효율적인 폐수 전처리 시스템을 개발하였다. 본 연구를 통해 개발된 모델의 결정계수($R^2$)는 0.982로 상당히 작은 오차범위를 보여줌으로써 모델의 높은 정확도를 입증하였다.

Mechanical Properties of B-Doped Ni3Al-Based Intermetallic Alloy

  • Oh, Chang-Sup;Han, Chang-Suk
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.42-45
    • /
    • 2012
  • The mechanical behavior and microstructural evolution during high temperature tensile deformation of recrystallized Ni3Al polycrystals doped with boron were investigated as functions of initial grain size, tensile strain rate and temperature. In order to obtain more precise information on the deformation mechanism, tensile specimens were rapidly quenched immediately after deformation at a cooling rate of more than $2000Ks^{-1}$, and were then observed by transmission electron microscopy (TEM). Mechanical tests in the range of 923 K to 1012 K were carried out in a vacuum of less than $3{\times}10^{-4}$ Pa using an Instron-type machine with various but constant cross head speeds corresponding to the initial strain rates from $1.0{\times}10^{-4}$ to $3.1{\times}10^{-5}s^{-1}$. After heating to deformation temperature, the specimen was kept for more than 1.8 ks before testing. The following results were obtained: (1) Flow behavior was affected by initial strain size; with decreasing initial grain size, the level of a stress peak in the true stress-true strain curve decreased, the steady state region was enlarged and elongation increased. (2) On the basis of TEM observation of rapidly quenched specimens, it was confirmed that dynamic recrystallization certainly occurred on deformation of fine-grained ($3.3{\mu}m$) and intermediate-grained ($5.0{\mu}m$) specimens at an initial strain rate of $3.1{\times}10^{-5}s^{-1}$ and at 973 K. (3) There were some dislocation-free grains among the new recrystallized grains. The obtained results suggest that both dynamic recrystallization and grain boundary sliding are operative during high temperature deformation.

$BF_3$촉매하의 옥세탄 공중합에 관한 분자 궤도론적 연구 (Theoretical Studies on the Cationic Polymerization Mechanism of Oxetanes(II))

  • 박정환;조성동;박성규;전용구
    • 대한화학회지
    • /
    • 제40권1호
    • /
    • pp.11-19
    • /
    • 1996
  • 에너지기인 azido기($-CH_2N_3$), nitrato기($-CH_2ONO_2$)로 치환된 옥세탄의 단량체를 $BF_3$촉매하의 공중합에 관해서 반경험적인 MINDO/3, MNDO, AM1 그리고 HF/3-21G 방법 등을 사용하여 이론적으로 고찰하였다. 옥세탄 치환제와 $BF_3$ 이분자 착물의 입체적, 정전기적 구조를 이론적으로 설명할 수 있다. 옥세탄의 공중합 성장단계에서 반응성은 옥세탄의 반응중심 탄소의 양전하 크기와 옥세탄 성장단계의 친전자체의 낮은 LUMO에너지에 좌우됨이 예측된다. 옥세탄의 공중합 반응성비는 계산치와 실험값이 일치하는 랜덤 공중합 반응이다. 평형상태의 고리형 oxonium 이온과 열린 carbenium 이온의 농도 크기가 반응 메카니즘의 결정단계이며, 형태와 계산을 기초로하여 빠른 평형을 예상하여 볼 때 선폴리머 성장단계에서 $S_N1$ 메카니즘이 $S_N2$ 메카니즘보다 빠르게 반응할 것으로 예측된다.

  • PDF

광대역 펄스감마선 탐지센서 최적화 설계 및 제작 (Optimized Design and Manufacture of Wideband Pulsed Gamma-ray Sensors)

  • 정상훈;이남호
    • 한국정보통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.223-228
    • /
    • 2017
  • 본 연구에서는 광대역 펄스감마선 탐지센서 최적화 설계를 수행하고 설계결과를 기반으로 탐지센서를 제작하여 전기적 특성을 분석하였다. 탐지센서의 최적화 설계를 위해 펄스감마선의 시간에 따른 에너지 프로파일로 부터 입력 변수를 도출하고 탐지감도 제어회로를 통하여 출력전류 범위를 결정하였다. 도출된 변수를 바탕으로 N-type Epi Wafer 및 TCAD(Technology Computer Aided Design)로 설계하고 제작하였다. 제작된 탐지센서의 전기적 특성 분석 결과 -3.3V 전압에서 12pA의 누설전류와 -5V의 전압에서 완전 공핍화 되는 특성을 가짐을 확인하였다. 제작된 센서의 포항가속기연구소 TEST LINAC 시험결과 감마선 설정 선율의 펄스방사선에 대해 고감도의 광전류를 생성시킴을 확인하였다.

열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구 (A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal)

  • 유영은;김덕종;윤재성;박시환
    • Design & Manufacturing
    • /
    • 제10권3호
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.

Fabrication and Electrical Properties of Local Damascene FinFET Cell Array in Sub-60nm Feature Sized DRAM

  • Kim, Yong-Sung;Shin, Soo-Ho;Han, Sung-Hee;Yang, Seung-Chul;Sung, Joon-Ho;Lee, Dong-Jun;Lee, Jin-Woo;Chung, Tae-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권2호
    • /
    • pp.61-67
    • /
    • 2006
  • We fabricate local damascene FinFET cell array in sub-60nm feature sized DRAM. The local damascene structure can remove passing-gate-effects in FinFET cell array. p+ boron in-situ doped polysilicon is chosen for the gate material, and we obtain a uniform distribution of threshold voltages at around 0.7V. Sub-threshold swing of 75mV/d and extrapolated off-state leakage current of 0.03fA are obtained, which are much suppressed values against those of recessed channel array transistors. We also obtain a few times higher on-state current. Based on the improved on- and off-state current characteristics, we expect that the FinFET cell array could be a new mainstream structure in sub-60nm DRAM devices, satisfying high density, low power, and high-speed device requirements.

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • 김경중;박재희;홍승휘;최석호;황혜현;장종식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1996년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

열처리 공정을 이용한 regenerated FBG의 제작 (Fabrication of Regenerated Fiber Bragg Grating Using Thermal Annealing)

  • 서지희;이남권;이승환;김유미;유윤식
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.124-129
    • /
    • 2013
  • In this paper, we manufactured the regenerated FBG by the thermal annealing of seed FBG based on UV irradiation. The writing conditions of regenerated FBGs were investigated in four types of optical fiber. FBGs written in $H_2$-free fiber were erased and not regenerated during the thermal annealing. FBG written in $H_2$ loaded Boron co-doped fiber was erased at the temperature of about $580^{\circ}C$ and regenerated about $590^{\circ}C$. However, the extinction of regenerated FBG started at the temperature over $900^{\circ}C$ and then FBG disappeared out. FBG written in $H_2$ loaded Ge high doped fiber was erased and regenerated around the temperature of $800^{\circ}C$ and maintained until the end of the thermal annealing. The reflection of the regenerated FBG was decreased about 12 dB and the center wavelength of the regenerated FBG was shifted about 0.7 nm compared with that of the seed FBG. The thermal characteristics of the regenerated FBG were analyzed by reheating from room temperature to $980^{\circ}C$. As results, the regenerated FBG had survived without a decrease of reflection and the thermal sensitivity was $15pm^{\circ}C$.

Thermal Degradation of BZO Layer on the CIGS Solar Cells

  • Choi, Pyungho;Kim, Sangsub;Choi, Byoungdeog
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.458-458
    • /
    • 2013
  • We investigated a study on the thermal degradation of boron doped zinc-oxide (BZO) layer which used as a transparent conducting layer on the Cu (In1-xGax) Se2 (CIGS) based thin film solar cells. Devices were annealed under the temperature of $100^{\circ}C$ or 100 hours and then Hall measurement was carried out to characterize the parameters of mobility (${\mu}Hall$), resistivity (${\rho}$), conductivity (${\sigma}$) and sheet resistance (Rsh). The initial values of ${\mu}Hall$, ${\rho}$, ${\sigma}$ and Rsh were $29.3cm^2$/$V{\cdot}s$, $2.1{\times}10^{-3}{\Omega}{\cdot}cm$, $476.4{\Omega}^{-1}{\cdot}cm^{-1}$ and $19.1{\Omega}$/${\Box}$ respectively. After the annealing process, the values were $4.5cm^2$/$V{\cdot}s$, $12.8{\times}10^{-3}{\Omega}{\cdot}cm$, $77.9{\Omega}^{-1}{\cdot}cm^{-1}$ and $116.6{\Omega}$/${\Box}$ respectively. We observed that ${\mu}Hall$ and ${\sigma}$ were decreased, and ${\rho}$ and Rsh were increased. In this study, BZO layer plays an important role of conducting path for electrons generated by incident light onthe CIGS absorption layer. Therefore, the degradation of BZO layer characterized by the parameters of ${\mu}Hall$, ${\rho}$, ${\sigma}$ and Rsh, affect to the cell efficiency.

  • PDF