• Title/Summary/Keyword: Boron addition

Search Result 200, Processing Time 0.033 seconds

Characteristics of the PbO-Bi2O3-B2O3-ZnO-SiO2 Glass System Doped with Pb Metal Filler (Pb 금속필러가 첨가된 PbO-Bi2O3-B2O3-ZnO-SiO2계 유리의 특성)

  • Choi, Jinsam;Jeong, DaeYong;Shin, Dong Woo;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.238-243
    • /
    • 2013
  • We investigated the effect of Pb-metal filler added to a hybrid paste(PbO-$Bi_2O_3-B_2O_3$-ZnO glass frit and Pb-powder), for joining flip-chip sat lower temperatures than normal. The glass transition temperature was detected at $250^{\circ}C$ and the softening point occurred at $330^{\circ}C$. As the temperature increased, the specific density decreased due to the volatility of the Pb-metal and boron component in the glass. When the glass was heat-treated at $350^{\circ}C$ for 5 min, XRD results revealed a crystalline $Pb_4Bi_3B_7O_{19}$ phase that had been initiated by the addition of Pb-filler in the hybrid paste. The addition of the Pb-metal filler caused are action between the Pb-metal and glass that accelerated the formation of the liquid phase. The liquid phase that formed, promoted bonding between the flip-chip substrate sat lower temperature.

Confirmation of Long-term stability on THPP using thermodynamic and kinetic analysis (열역학적 및 속도론적 분석을 통한 THPP의 노화 안정성 확인)

  • Lee, Junwoo;Kim, Sangwon;Choi, Kyoungwon;Lee, Seung Bok;Ryu, Byungtae;Park, Taiho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.513-516
    • /
    • 2017
  • When stored for long periods in a powder-based device (PMD), the explosive power in the device is aged and the explosive power is changed. Thus, The gunpowder used in the PMD must be chemically and physically stable for both internal and external factors. Since $BKNO_3$ and THPP are used as representative gunpowder, thermodynamic and kinetic analyzes were performed based on these gunpowders. Differential scanning calorimeter (DSC) was used to analyze the calorific value and reaction rate. As a result, there was no significant change in caloric value and reaction rate in THPP. In addition, XPS and TEM-EDS analyzes were performed to confirm the formation of oxide films directly related to aging, and no oxide films were observed as a result of thermal analysis. In addition, XPS and TEM-EDS analyzes were performed to confirm the formation of oxide films directly related to aging. As a results, no oxide films were observed. It can be concluded that THPP is the most famous gunpowder in terms of long-term stability.

  • PDF

A Study on the Bainite Phase Control of Direct-Quenched Low Carbon Steels (저탄소 직접 소입강의 베이나이트상 조절에 관한 연구)

  • An, Byeong-Gyu;Go, Yeong-Sang;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.841-851
    • /
    • 1996
  • In a recent investigation, the formation of bainite phase in direct-quenched low carbon non heat-treated steel was reported. In this study the effects of bainite phase on the mechanical properties of direct-quenched microalloying steels were investigated. By isothermal transformation at $480^{\circ}C$ for 7 sec., volume fraction of bainite lath was 15~20%, and the UTS and impact energy were increased. In this case $B_{ll}$ and $B_{lll}$ type bainite was observed and the fractography of impact test specimen showed a ductile fracture tendency. Isothermal transformation for 100sec., yielded 30% volume fraction of granular bainite and the mechanical properties were decreased. The f ractography of impact test specimen showed a brittle fracture tendency. The addition of Mo was more effective than B for improving impact energy because amounts of boron aditions were restricted to considerably lower levels, typically 10~ 30ppm. From this study, it is predicted that 15~20% volume fraction of lath bainite on the direct quenching process is procduced by addition of Mo up to 1.2wt. % and controlling the finish forging proc¬ess at $1000^{\circ}C$ and using oil as direct quenching media. This will improve mechanical properties of the direct- quenched steel.

  • PDF

Physico-Chemical Properties of $Tl_2O-B_2O_3-SiO_2$ Glasses and Their Phase Separations ($Tl_2O-B_2O_3-SiO_2$ 系 유리의 物理化學的 性質 및 그의 分相)

  • Kim, Kee-Hyong
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.65-80
    • /
    • 1968
  • The physico-chemical properties of nine selected thallium borosilicate glasses and other 21 supplementary compositions were investigated. Their composition-property curves are found to be in many respects analogous to those of other borosilicate glasses containing lithia, soda, and lead oxide. It is indicated that certain minima found in the composition-property curves of thallium borosilicate glasses might be caused by a change in boron coordination as has been observed to occur in the $Na_2O-B_2O_3-SiO_2$ glasses. Typical effects of thallium ions on the borosilicate glass are summarized as follows: 1) Addition of thallium ions increased density, refractive index, water solubility, linear coefficient of thermal expansion, and dielectric constant. 2) Increased concentration of thallium decreased the softening point of the glasses, caused fluorescence under ultraviolet radiation and smeared out the absorption edges up to $15{\mu}$ in the infrared region. An extensive liquid immiscibility was found by replication electron microscope technique in the $Tl_2O-B_2O_3-SiO_2$ system. The immiscibility covers a composition range roughly from 55 wt. % Tl2O to the binary system $B_2O_3-SiO_2.$ By acid treatment, it was found that the immiscible glass consists of separate silica-rich and boron-rich phases.

  • PDF

Improving Rice Productivity and Soil Quality by Coal Ash-Phosphogypsum Mixture Application (석탄회와 폐석고 혼합제재에 의한 벼 수량 증대 및 토양의 이화학성 개선)

  • Lee, Yong-Bok;Ha, Ho-Sung;Lee, Chang-Hoon;Lee, Hyub;Ha, Byung-Hyun;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • As a silicate source to rice, a coal ash (50%) was mixed with a phosphogypsum (hereafter, gypsum, 50%). Field experiments were carried out to evaluate rice (Oryza sativa) productivity in silt loam (SiL) to which 0, 20, 40 and $60Mg\;ha^{-1}$ of the mixture were added. The mixture increased rice yield and showed the highest yields following the addition of $30Mg\;ha^{-1}$. The mixture did not result in an excessive uptake of heavy metals by the rice grain. The mixture improved available silicate and phosphate and exchangeable calcium contents in soil. The available boron content in soil increased with the mixture application levels up to $1.42mg\;kg^{-1}$ following the application of $60Mg\;ha^{-1}$, but boron toxicity in rice was not found. It is concluded that the coal ash and gypsum mixture could be a good alternative to inorganic soil amendments to restore the soil nutrient balance in paddy soil.

Analysis of the CREOLE experiment on the reactivity temperature coefficient of the UO2 light water moderated lattices using Monte Carlo transport calculations and ENDF/B-VII.1 nuclear data library

  • El Ouahdani, S.;Erradi, L.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Boulaich, Y.;Ahmed, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1120-1130
    • /
    • 2020
  • The CREOLE experiment performed In the EOLE critical facility located In the Nuclear Center of CADARACHE - CEA have allowed us to get interesting and complete experimental information on the temperature effects in the light water reactor lattices. To analyze these experiments with accuracy an elaborate calculation scheme using the Monte Carlo method implemented in the MCNP6.1 code and the ENDF/B-VII.1 cross section library has been developed. We have used the ENDF/B-VII.1 data provided with the MCNP6.1.1 version in ACE format and the Makxsf utility to handle the data in the specific temperatures not available in the MCNP6.1.1 original library. The main purpose of this analysis is the qualification of the ENDF/B-VII.1 nuclear data for the prediction of the Reactivity Temperature Coefficient while ensuring the ability of the MCNP6.1 system to model such a complex experiment as CREOLE. We have analyzed the case of UO2 lattice with 1166 ppm of boron in ordinary water moderator in specified temperatures. A detailed comparison of the calculated effective multiplication factors with the reference ones [1] in room temperature presented in this work shows a good agreement demonstrating the validation of our 3D calculation model. The discrepancies between calculations and the differential measurements of the Reactivity Temperature Coefficient for the analyzed configuration are relatively small: the maximum discrepancy doesn't exceed 1,1 pcm/℃. In addition to the analysis of direct differential measurements of the reactivity temperature coefficient performed in the poisoned UO2 lattice configuration, we have also analyzed integral measurements in UO2 clean lattice configuration using equivalency of the integral temperature reactivity worth with the driver core fuel reactivity worth and soluble boron reactivity worth. In this case both of the ENDF/B-VII.1 and JENDL.4 libraries were used in our analysis and the obtained results are very similar.

The Characteristics for BNCT facility in Hanaro Reactor

  • Soheigh Suh;Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Yoo, Seong-Yul;Rhee, Chang-Hun;Rhee, Soo-Yong;Jun, Byung-Jin
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.161-163
    • /
    • 2002
  • The BNCT(Boron Neutron Capture Therapy) facility has been developed in Hanaro(High-flux Advanced Neutron Application Reactor), a research reactor of Korea Atomic Energy Research Institute. A typical tangenial beam port is utilized with this BNCT facility. Thermal neutrons can be penetrated within the limits of the possible maximum instead of being filtered fast neutrons and gamma rays as much as possible using the silicon and bismuth single crystals. In addition to, the liquid nitrogen (LN$_2$) is used to cool down the silicon and bismuth single crystals for the increase of the penetrated thermal neutron flux. Neutron beams for BNCT are shielded using the water shutter. The water shutter was designed and manufactured not to interfere with any other subsystem of Hanaro when the BNCT facility is operated. Also, it is replaced with conventional beam port plug in order to cut off helium gas leakage in the beam port. A circular collimator, composed of $\^$6/Li$_2$CO$_3$ and polyethylene compounds, is installed at the irradiation position. The measured neutron flux with 24 MW reactor power using the Au-198 activation analysis method is 8.3${\times}$10$\^$8/ n/cm$^2$ s at the collimator, exit point of neutron beams. Flatness of neutron beams is proven to ${\pm}$ 6.8% at 97 mm collimator. According to the result of acceptance tests of the water shutter, the filling time of water is about 190 seconds and drainage time of it is about 270 seconds. The radiation leakages in the irradiation room are analyzed to near the background level for neutron and 12 mSv/hr in the maximum for gamma by using BF$_3$ proportional counter and GM counter respectively. Therefore, it is verified that the neutron beams from BNCT facility in Hanaro will be enough to utilize for the purpose of clinical and pre-clinical experiment.

  • PDF

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

Effect of amendments and their causes of rice yield increase in ill drained paddy soil (습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究))

  • Park, Chon Suh;Song, Jae Ha;Kim, Yung Sup;Lee, Chung Young;Choh, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1971
  • In order to establish the method of improving ill drained paddy soil where the accumulation of absorption inhibitor is worried in the earlier stages of rice growth, proper soil is selected and an field experiment is designed having treatments such as lime materials, none sulfate fertilizers, boron and straw etc. The data of yield and plant analysis in different stages of rice growth is eveluated and discussed to obtain following summaries. (1) Significant yield increase was made by the treatment of lime materials such as slacked lime or wollastonite powder, materials inhibiting the activity of microorganisms such as boron and of none sulfate fertilizers lacking inhibitor producing sources. (2) The crop scientifice causes of decreasing yield are the decreasing the number of panicles per hill, grains per panicle and the weight of grains. (3) The plant nutritional causes of decreasing yield are the lowering of nitrogen content throughout the life, phosphate content since young premodia formation stage of plant and the decreased content of magnesium, calcium and silicate in straw at harvesting stage. (4) The causes of lowering the content of various elements in rice plant grown in ill drained paddy soil are suggested as root damage by producing and accumulating absorption inhibitors such as organic acids and hydrogen sulfide etc, from the following observed facts; (a) In young premodia formation stage, attaining to the maximum production and accumulation of absorption inhibitor, the phosphate accumulation in plant was smaller in the phosphate plots than without phosphate plots and much higher in the neutralized plots by adding lime materials. (b) In the plots of straw addition, the potassium content in plant at the young premodia formation stage is very low probabley due to root damage by absorption inhibitor produced from the process of straw decomposition but higher at the stage of harvesting probably due to the immetabolic negative absorption of damaged roots. (c) The effect of boron, known as the inhibitor of microorganism activity to decompose organic matter, is apparent. (d) The effect of nonsulfate fertilizer treatment, having no source of producing inhibitor such as hydrogen sulfide, was significant. (e) All the yield components, decided around the young premodia formation stage attaining to the maximum inhibitor concentration in soil and minimum root activity, are significantly decreased.

  • PDF

Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y Glass Electrolytes (Li1+xFexTi2-x(PO4)3-y(BO3)y 계 유리 전해질에서 Fe 및 BO3 치환 효과)

  • Choi, Byung-Hyun;Jun, Hyung Tak;Yi, Eun Jeong;Hwang, Haejin
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.52-64
    • /
    • 2021
  • The effect of Fe and BO3 doping on structure, thermal, and electrical properties of Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5)-based glass and glass ceramics was investigated. In addition, their crystallization behavior during sintering and ionic conductivity were also investigated in terms of sintering temperature. FT-IR and XPS results indicated that Fe2+ and Fe3+ ions in Li1+xFexTi2-x(PO4)3-y(BO3)y glass worked as a network modifier (FeO6 octahedra) and also as a network former (FeO4 tetrahedra). In the case of the glass with low substitution of BO3, boron formed (PB)O4 network structure, while boron preferred BO3 triangles or B3O3 boroxol rings with increasing the BO3 content owing to boic oxide anomaly, which can result in an increased non-bridging oxygen. The glass transition temperature (GTT) and crystallization temperature (CT) was lowered as the BO3 substitution was increased, while Fe2+ lowered the GTT and raised the CT. The ionic conductivity of Li1+xFexTi2-x(PO4)3-y(BO3)y glass ceramics were 8.85×10-4 and 1.38×10-4S/cm for x = 0.2 and 0.5, respectively. The oxidation state of doped Fe and boric oxide anomaly were due to the enhanced lithium ion conductivity of glass ceramics.