• Title/Summary/Keyword: Boron Steel

Search Result 181, Processing Time 0.029 seconds

저탄소 보론강의 경화능에 미치는 W 첨가의 영향 (Effect of W Addition on the Hardenability of Low-Carbon Boron Steels)

  • 황병철
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.488-494
    • /
    • 2014
  • The effect of tungsten (W) addition on the hardenability of low-carbon boron steels was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy. The hardenability was discussed with respect to transformation behaviour aspects depending on the segregation and precipitation of boron at austenite grain boundaries. A critical cooling rate producing a hardness corresponding to 90 % martensite structure was measured from a hardness distribution plot, and was used as a criterion to estimate hardenability at faster cooling rates. In the low-carbon boron steel, the addition of 0.50 wt.% W was comparable to that of 0.20 wt.% molybdenum in terms of critical cooling rate, indicating hardenability at faster cooling rates. However, the addition of 0.50 wt.% W was not more effective than the addition of .0.20 wt.% molybdenum at slower cooling rates. The addition of 0.20 wt.% molybdenum completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.50 wt.% W did not, even at the cooling rate of $1.0^{\circ}C/s$. Therefore, it was found that the effect of alloying elements on the hardenability of low-carbon boron steels can be differently evaluated according to cooling rate.

보론강의 경화능과 인장 특성에 미치는C, Mo, Cr의 영향 (Effects of C, Mo and Cr on Hardenability and Mechanical Properties of Boron-Bearing Steels)

  • 임현석;정우연;황병철
    • 열처리공학회지
    • /
    • 제26권5호
    • /
    • pp.241-247
    • /
    • 2013
  • Hardenability and mechanical properties of boron-bearing steels containing C, Mo and Cr were investigated in this study. Using quench dilatometer, the steel specimens were cooled down to room temperature at different cooling rates to construct continuous cooling transformation diagrams and then the transformation products from austenite were examined. A critical cooling rate was introduced as an index to quantitatively evaluate the hardenability. The C addition to boron-bearing steels did not significantly affect hardenability compared to boron-free steels although it increases the hardenability. With the same content, the Mo addition largely increased the hardenability of boron-bearing steels than the Cr addition because it decreased both the transformation start and finish temperatures at low cooling rates. In particular, the Mo addition completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, whereas the Cr addition nearly suppressed it at the cooling rates above $3^{\circ}C/s$.

보론강 카메라 케이스 고온성형 공정 비교 (Comparison of the Quenching Method in Hot Press Forming of Boron Steel)

  • 서오석;김헌영;홍석무;유수열;윤석진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.185-189
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. There are several types of the hot press forming processes according to the quenching method, water quenching and die quenching, etc. In the study, the process was numerically and physically simulated to compare the two types of quenching processes, and then the strength, hardness and dimensions of the products were compared with try-outs.

Characterization of Mechanical Properties of Boron Steel Sheet in Hot Bending Process with Various Parameters

  • 이양;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.375-378
    • /
    • 2009
  • Hot press forming is a new forming process which also names as hot stamping. It can greatly enhance the formability of forming parts. This paper researches the formability of boron steel sheet in hot bending process which is a kind of hot press forming. In the text, the influence of hot press forming processing parameters, such as the heating temperature, blank holding force, punch speed and punch and die radius, on the mechanics properties and microstructure of the hot bending parts was analyzed by tension test and the metallographic observation on the parts with various processing parameters. The relationship between blank holding force and punch load was also presented.

  • PDF

원통형 보론강을 사용한 가열-급냉공정에서의 열변형 해석 (Thermo-mechanical Simulation of Boron Steel Cylinders during Heating and Rapid Cooling)

  • 서창희;권태하;강경필;최현열;김양수;김영석
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.475-481
    • /
    • 2014
  • Water quenching is one method of cooling after hot forming, which is presently being used for the manufacturing of automobile parts. The formed parts at room temperature are heated and then cooled rapidly in a water bath to produce high strength. The formed parts may undergo excessive thermal distortion during the water quench. In order to predict the distortion during water quenching, a coupled thermo-mechanical simulation is needed. In the current study, the simulation of heating and cooling of boron steel cylinders was performed. The material properties for the simulation were calculated from JMatPro, and the convective heat transfer coefficient was obtained from experimental tests. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation.

보론강 용접 맞춤 판재의 고온 에릭슨 커핑 평가 (Formability Evaluation of Tailor Welded Blanks of Boron Steel Sheets by Erichsen Cupping Test at Elevated Temperature)

  • 김영일;김지훈;김용;이문용;문영훈;김대용
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.568-574
    • /
    • 2011
  • The combination of tailor welded blank (TWB) and hot stamping often offers improved crash-worthiness and reduced mass of stamped parts in the automobile body. To investigate the formability of laser TWB and the reliability of weld line, the present study used 22MnB5 boron steel sheet of the same thickness and used the Erichsen cupping test at elevated temperatures. The effects of laser direction, die temperature, weld line positions and forming speed on formability(the limiting dome height) were studied and the results were compared with the formability of the base material.

재료 물성 모델러와 Abaqus를 활용한 핫 프레스 포밍 후의 보론 강판내 잔류음력의 예측 (Prediction of Residual Stresses in the Boron Steel Sheet after Hot Press Forming using Material Properties Modeler and Abaqus)

  • 지민욱;서영성;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.493-496
    • /
    • 2008
  • The residual stress generated in the boron steel blank formed via hot press forming process was predicted by JMatPro, a material property modeler, and Abaqus. The numerical predictions were compared by the experimental measurements obtained by the instrumented indentation. Both the predicted and measured principal stresses monitored at the outer surface of central bending position were qualitatively in good agreement. It was concluded that the residual stresses generated from hot forming process is not negligible as it has been generally assumed, although the spring back deformation is quite small. This should be specially considered from the part design stage since the tensile nature of the residual stress exhibited on the surface may lead to the stress corrosion cracking.

  • PDF

비도금 보론강판 산화층 평가용 시편의 퀜칭속도 예측기법 연구 (A Study on Quenching Speed Prediction Method of Specimen for Evaluating the Oxide Layer of Uncoated Boron Steel Sheet)

  • 이지호;송정한;배기현
    • 소성∙가공
    • /
    • 제31권1호
    • /
    • pp.17-22
    • /
    • 2022
  • Hot stamping is widely used to manufacture structural parts to satisfy requirements of eco-friendly vehicles. Recently, hot forming technology using uncoated steel sheet is being studied to reduce cost and solve patent problems. In particular, research is focused on process technology capable of suppressing the generation of an oxide layer. To evaluate the oxide layer in the hot stamping process, Gleeble testing machine can be used to evaluate the oxide layer by controlling the temperature history and the atmosphere condition. At this time, since cooling by gas injection is impossible to protect the oxide layer on the surface of a specimen, research on a method for securing a quenching speed through natural cooling is required. This paper proposes a specimen shape design method to secure a target quenching speed through natural cooling when evaluating the oxide layer of an un-coated boron steel sheet by Gleeble test. For the evaluation of the oxide layer of the un-coated steel sheet through the Gleeble test, dog-bone and rectangular type specimens were used. In consideration of the hot stamping process, the temperature control conditions for the Gleeble test were set and the quenching speed according to the specimen shape design was measured. Finally, the quenching speed sensitivity according to shape parameter was analyzed through regression analysis. A quenching speed prediction equation was then constructed according to the shape of the specimen. The constructed quenching speed prediction equation can be used as a specimen design guideline to secure a target quenching speed when evaluating the oxide layer of an un-coated boron steel sheet by the Gleeble test.

보론강 판재 핫스탬핑시 직수분사냉각 공정의 적용성 (The Application of Direct Water Quenching Process in Hot Stamping of Boron Steels)

  • 박현태;권의표;임익태
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.818-824
    • /
    • 2019
  • In this study, the direct water quenching technique is applied to validate the applicability of direct water quenching as a cooling method in the hot stamping process of 3.2 mm thick boron steel sheet. Cooling performance of conventional die quenching and direct water quenching is compared. Higher cooling rate is obtained by hot stamping with direct water quenching compared to die quenching. As the flow rate of cooling water increases, the cooling rate increases, and a high cooling rate of 71 ℃/s is achieved under flow rate conditions of 0.8 L/min. Through direct water quenching, the cooling time required for sufficient cooling of the sheet is reduced. Full martensitic microstructure is obtained under flow rate condition of 0.8 L/min. Hardness increases with increasing flow rate. From these results, it is verified that the direct water quenching is applicable to the hot stamping of thick boron steel sheet.

304 스테인레스강과 구조용탄소강과의 천이액상확산접합에 관한 연구 (A study on transient liquid phase diffusion bonding of 304 stainless steel and structural carbon steels)

  • 김우열;정병호;박노식;강정윤;박세윤
    • Journal of Welding and Joining
    • /
    • 제9권4호
    • /
    • pp.28-39
    • /
    • 1991
  • The change of microstructure in the bonded interlayer and mechanical properties of the joints were investigated during Transient Liquid Phase Diffusion Bonding(TLP bonding) of STS304/SM17C and STS304/SM45C couples using Ni base amorphous alloys added boron and prepared alloy as insert metal. Main experimental results obtained in this study are as follows: 1) Isothermal solidification process was completed much faster than theoretically expected time, 14ks at 1473K temperature. Its completion times were 3.6ks at 1423K, 2.5ks at 1473K and 1.6ks at 1523K respectively. 2) As the concentration of boron in the insert metal increased, the more borides were precipitated near bonded interlayer and grain boundary of STS304 side during isothermal solidification process, its products were $M_{23}P(C,B)_6}_3)$ The formation of grain boundary during isothermal solidification process was completed at structural carbon steel after starting the solidfication at STS304 stainless steel. 4) The highest value of hardness was obtained at bonded interface of STS304 side. The desirable tensile properties were obtained from STS304/SM17C, STS304/SM45C using MBF50 and experimentally prepared insert metal with low boron concentration.

  • PDF