• Title/Summary/Keyword: Borehole collapse

Search Result 18, Processing Time 0.024 seconds

Borehole stability analysis in oil and gas drilling in undrained condition

  • Wei, Jian-Guang;Yan, Chuan-Liang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.553-567
    • /
    • 2014
  • Borehole instability during drilling process occurs frequently when drilling through shale formation. When a borehole is drilled in shale formation, the low permeability leads to an undrained loading condition. The pore pressure in the compressed area near the borehole may be higher than the initial pore pressure. However, the excess pore pressure caused by stress concentration was not considered in traditional borehole stability models. In this study, the calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel's excess pore pressure theory. Combined with Mohr-Coulumb strength criterion, the calculation model of collapse pressure of shale in undrained condition is obtained. Furthermore, the variation of excess pore pressure and effective stress on the borehole wall is analyzed, and the influence of Skempton's pore pressure parameter on collapse pressure is also analyzed. The excess pore pressure decreases with the increasing of drilling fluid density; the excess pore pressure and collapse pressure both increase with the increasing of Skempton's pore pressure parameter. The study results provide a reference for determining drilling fluid density when drilling in shale formation.

Using a Borehole Stability Device for Hydraulic Testing in Unconsolidated Alluvium (공벽 유지장치를 이용한 미고결 충적층의 수리특성 평가)

  • Won, Kyoung-Sik;Kim, Chunsoo;Chae, Soo-Yong;Shin, Dong-Min
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.15-22
    • /
    • 2016
  • Hydraulic falling head and slug tests were carried out in an alluvium aquifer using a borehole stability device. The hydraulic testing had proved difficult in alluvial formations of sands and gravels due to borehole collapse and unstable borehole walls within the test section. This study aims to improve the hydraulic test results by using a borehole stability device. The device can minimize the collapse of borehole walls, and the use of a filter with a constant opening ratio improves the calculations per unit area of the test section. Permeability obtained from the falling head test without a borehole stability device was 8.82 × 10−5m/sec. When the borehole stability device was installed in the same test section the measured permeability increased to 4.00 × 10−4m/sec, which is 4.5 times that obtained without the borehole device. The relatively low permeability obtained using the conventional test method is attributed to the presence of a fine-grained slime generated during drilling and a reduction of the test area in the test interval due to a gradual collapse of the borehole walls. This study considers how the use of a borehole stability device to prevent borehole collapse can influence the results of hydraulic tests in alluvial formations. It is expected that the results can be used as a basis for improving the reliability and applicability of hydraulic tests performed in alluvial aquifers.

Alterations of breakdown and collapse pressures due to material nonlinearities

  • Nawrocki, Pawel A.
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.155-168
    • /
    • 2009
  • Breakdown pressures obtained from the classic, linear elastic breakdown model are compared with the corresponding pressures obtained using a nonlinear material model. Compression test results obtained on sandstone and siltstone are used for that purpose together with previously formulated nonlinear model which introduces elasticity functions to address nonlinear stress-strain behaviour of rocks exhibiting stress-dependent mechanical properties. Linear and nonlinear collapse pressures are also compared and it is shown that material nonlinearities have significant effect on both breakdown and collapse pressures and on tangential stresses which control breakdown pressure around a borehole. This means that the estimates of ${\sigma}_H$ made using linear models give stress values which are different than the real values in the earth. Thus the importance of a more accurate analysis, such as provided by the nonlinear models, is emphasised. It is shown, however, that the linear elastic model does not necessarily over-predict borehole stresses and the opposite case can be true, depending on rock type and test interpretation.

Numerical Approach to Investigate the Effect of Mud Pressure on the Borehole Stability during Horizontal Directional Drilling (수평굴착 시 점토압력이 굴착공의 안정에 미치는 영향에 관한 수치해석적 연구)

  • Kang, Jae Mo;Lee, Janggeun;Bae, Kyu-Jin;Moon, Changyeul;Ban, Hoki
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.71-76
    • /
    • 2015
  • Recently, people are increasingly interested in horizontal directional drilling (HDD) to construct oil and gas pipeline and utility pipeline in the urban area as one of trenchless methods. One of major issues during the HDD is the collapse of borehole, which may be the potential causes of ground collapse. This study investigated the effect of mud pressure on the borehole stability, using finite element analysis. Since the borehole is being drilled with a certain angle, three dimensional analysis should be performed. The borehole stability was examined by applying two different types of mud pressures, i.e., uniform and non-uniform, to the exterior surface of borehole. The results show that the high mud pressure at the beginning of drilling, i.e., at shallow depth, causes the borehole collapse, whereas the borehole was stable even at high mud pressure as the drilling depth increases. It can be said that the determination of maximum mud pressure is strongly related to the drilling depth.

Stability Analysis for the Pohang Deep Geothermal Borehole (포항 심부 지열 시추공의 안정성 분석 연구)

  • Lee, Min-Jung;Chang, Chan-Dong;Lee, Jun-Bok;Lee, Tae-Jong;Hwang, Se-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.204-213
    • /
    • 2008
  • This paper presents the analysis about the stability of the Pohang deep geothermal borehole drilled in 2006. Severe wellhole instability problems such as collapse and tight hole occurred in weak rocks while drilling. Optimal mud pressure (mud window) required to prevent instability problems during drilling is obtained from analysis on in-situ stress and rock strength. The window is bounded by vertical stress in its upper limit and by either collapse pressure or pore pressure in its lower limit. Mud window varies with different types of rocks. In the top-most semi-consolidated mudstone formation, no mud window can secure borehole stability. In some weak rock types (basic dyke and crystal tuff), the borehole pressure needs to be higher by $50{\sim}60%$ than hydrostatic pressure. That means a mud density of 1.5 g/$cm^3$ or higher should be applied during drilling in order to prevent excessive collapse around the borehole.

Use of Ultrasonic beam transmissivity for investigating the structural features in plastic pipe cased borehole (초음파의 매질 투과성을 이용한 시추공 케이싱 배면의 암상 및 절리구조 조사 연구)

  • 김중열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.751-758
    • /
    • 2002
  • Boreholes that are drilled in soft or unconsolidated materials such as gravels and coals are prone to collapse. To maintain the hole, some kinds of casing pipes are needed. If thereby a plastic pipe e.g. PVC is used for the casing, Televiewer tool is still capable of detecting structural features such as fractures in the borehole wall behind the pipe, whereas other borehole-imaging logging devices such as BIPS (Borehole Image Processing System) and FMS(Formation Micro Scanner) won't provide any information about that. Televiewer's primary component is a piezoelectric transducer centered in the hole. It acts as both a transmitter and receiver, and sends an ultrasonic beam. That is reflected, in the same manner as the seismic wave propagation, from the both sides(inner and outer surfaces) of the casing pipe, transmits through the pipe and then reflected from the borehole wall. With an appropriate choice of time-windowing, it is possible to capture the returning signals from both the borehole wall and the outer side of casing pipe as well. A suite of laboratory tests were performed on various physical models composed of plastic pipes with different diameters. Although the amplitudes of returning signals were reduced to about half the usual value due to the transmission loss, the dynamic range of Televiewer tool was sufficient to observe the structural features behind the casing pipe. Besides, several representative case studies at various research areas in our country are presented. The results demonstrate the usefulness of the transmissivity of Televiewer acoustic km, which will assist in further structural interpretation.

  • PDF

Correlation of Tectolineaments and Discontinuities in connection with Slope Failure (사면 붕괴와 관련 구조선 분석과 불연속면의 상관성 연구)

  • Baek, Yong;Koo, Ho-Bon;Kim, Seung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.303-313
    • /
    • 2001
  • A cut-slope near Guam-Ri Hwado-Eup Namyangju-Si Kyunggi-Do collapsed during a heavy rainfall over 400mm at 28th of August 2000. The cut-slope collapse reportedly developed mainly by block sliding along a set of discontinuities, although slope angle of the cut-slope was 40$^{\circ}$(1:1.2) that agrees with the road construction criteria. This study aims to analyze differences and correlations among several data-collecting methods limited to discontinuity analysis related with cut-slope collapse. This study started with analysing discontinuity surface characteristics, geology of the country rock and orientations of the discontinuities directly related with the collapse. Analysis of aerial photos around the study area provided regional lineament data, and discontinuity plane description and measurements were collected from core logging and Borehole Image Processing System (BIPS). Spearmans correlation ranking coefficient method was used to get correlation of discontinuity planes according to analysis methods. The result suggests that the correlation coefficient is ${\gamma}_s$ = 0.91 Plus, stability analysis of discontinuity plane orientation data using equal-area stereonet revealed that the study area is unstable to planar failure. This study suggests that the cut-slope angles currently applied should be shallower and that significant attention is required to orientation distribution of discontinuities existed in cut-slopes studies.

  • PDF

Application of Tunnel Information Management System and Tunnel Collapse Inference System in Tunnel (터널 정보관리 시스템과 터널 붕락 예측 시스템 적용성 연구)

  • 마상준;서경원
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.84-92
    • /
    • 2002
  • For an efficient management and analysis of geological/geotechnical data obtained during site investigations or tunnel construction, Tunnel Information System(TIS) was developed in this study. TIS is running in CIS(Geographical Information System) which has a spatial data. TIS consists of two parts, the Tunnel Face Mapping System(FaceMap), to record a geological features by observations and measurements at the surface of the excavation, the Borehole Data Management System(BDMS), to store the different types of rock data related to boreholes. Using the database of collapsed tunnels, 20 in Korea and 84 in Europe and with an artificial neural network, an expert system was developed for inferring the tunnel collapse pattern and its volume. And by applying Geo-predict, the system developed, in tunnels under construction, observed data from the $\bigcirc$$\bigcirc$tunnl site was compared and analyzed.

Spine and Ribs Techniques for Practical use of Standoff Compensation in a Density Log (밀도검층 이격보정 실용화를 위한 Spine and Ribs 기법 연구)

  • Han, Manho;Kim, Yeonghwa;Yi, Myeong-Jong;Kim, Jongman
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.39-48
    • /
    • 2018
  • We carried out the standoff compensation data from 2007 to 2011 into four different density borehole models to find out the most effectiveness of standoff compensation charts. First, we investigated the irregular collapse characteristics of gamma ray and cut the non-ideal gamma response to improve the effectiveness of the standoff compensation error data. Effectiveness of detector combinations, density of borehole, and spine and ribs techniques from the modified standoff compensation data was analyzed. As the result of comparison, LSD-MSD combination has been suitable for standoff compensation more than LSD-SSD combination and it is possible to do standoff compensation for soil or weathered zone under groundwater level without fatal errors. Even though error scales of density transformed spine and ribs techniques were generally large compared to the conventional standoff compensation, standoff compensation for soil and weathered zone under groundwater level were sufficiently effective.