• Title/Summary/Keyword: Bootstrap방법

Search Result 171, Processing Time 0.031 seconds

A Comparative Study on Tests of Correlation (상관계수에 대한 검정법 비교)

  • Cho, Hyun-Joo;Song, Myung-Unn;Jeong, Dong-Myung;Song, Jae-Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.235-245
    • /
    • 1996
  • In this paper, we studied about several methods of testing hypothesis of correlation, specially Approximate method, Empirical method and Bootstrap method. The Approximate method is based on the Fisher's Z-transformation and the Empirical and Bootstrap methods approximate the distribution of the sample correlation coefficient by Monte Carlo simulation and Bootstrap technique, respectively. In order to compare how good these tests are, we computed powers under various alternatives. Consequently, we see that the Approximate test performs very well even if in small sample and all tests have almost the same power in large sample.

  • PDF

Confidence Interval for Capability Process Indices by the Resampling Method (재표집방법에 의한 공정관리지수의 신뢰구간)

  • 남경현
    • Journal of Applied Reliability
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • In this paper, we utilize the asymptotic variance of $C_{pk}$ to propose a two-sided confidence interval based on percentile-t bootstrap method. This confidence interval is compared with the ones based on the standard and percentile bootstrap methods. Simulation results show that percentile-t bootstrap method is preferred to other methods for constructing the confidence interval.l.

  • PDF

The binary bootstrap for single simulation output analysis

  • 김윤배
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.105-116
    • /
    • 1992
  • 이 논문에서는 discrete-event모의실험을 사용해서 대기행렬모형에서 대기시간이 길어지는 확률을 추정하는 문제를 연구했습니다. 단 한번의 모의실험에서 확률의 신뢰구간을 구할 수 있는 방법인, binary bootstrap을 개발했습니다. Bernoulli trial과 first-order Markov processes에 적용하여 본 결과 이론치에 별 차이없이 추정하였습니다. 또한 M/M/1 대기행렬모형에서 대기시간이 길 확률을 추정했을 때 batch means방법보다 binary bootstrap이 월등히 우수한 결과를 보였습니다.

  • PDF

Bootstrap Calibrated Confidence Bound for Variance Components Model (분산 성분 모형에 대한 붓스트랩 보정 신뢰구간)

  • Lee, Yong-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.535-544
    • /
    • 2006
  • We consider use of Bootstrap calibration in the problem of setting a confidence interval for a linear combination of variance components. Based on the the modified large sample(MLS) method by Graybill and Wang(1980), Bootstrap Calibration is applied to improve the coverage probability of the MLS confidence bound when the experiment is balanced and coefficients of a linear combination are positive. Performance of the proposed confidence bound in small sample is investigated by simulation studies.

Testing for Overdispersion in a Bivariate Negative Binomial Distribution Using Bootstrap Method (이변량 음이항 모형에서 붓스트랩 방법을 이용한 과대산포에 대한 검정)

  • Jhun, Myoung-Shic;Jung, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.341-353
    • /
    • 2008
  • The bootstrap method for the score test statistic is proposed in a bivariate negative binomial distribution. The Monte Carlo study shows that the score test for testing overdispersion underestimates the nominal significance level, while the score test for "intrinsic correlation" overestimates the nominal one. To overcome this problem, we propose a bootstrap method for the score test. We find that bootstrap methods keep the significance level close to the nominal significance level for testing the hypothesis. An empirical example is provided to illustrate the results.

Prediction of Conditional Variance under GARCH Model Based on Bootstrap Methods (붓스트랩 방법을 이용한 일반화 자기회귀 조건부 이분산모형에서의 조건부 분산 예측)

  • Kim, Hee-Young;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.287-297
    • /
    • 2009
  • In terms of generalized autoregressive conditional heteroscedastic(GARCH) model, estimation of prediction interval based on likelihood is quite sensitive to distribution of error. Moveover, it is not an easy job to construct prediction interval for conditional variance. Recent studies show that the bootstrap method can be one of the alternatives for solving the problems. In this paper, we introduced the bootstrap approach proposed by Pascual et al. (2006). We employed it to Korean stock price data set.

Robust Control Chart using Bootstrap Method (붓스트랩 방법을 이용한 로버스트 관리도)

  • 송서일;조영찬;박현규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.3
    • /
    • pp.39-49
    • /
    • 2003
  • Statistical process cintrol is intended to assist operators of a stable system in monitoring whether a change has occurred in the process, and it uses several control charts as main tools. In design and use of control chart, it is rational that probability of false alarm is minimized in stable process and probability of detecting shifts is maximized in out-of-control. In this study, we establish bootstrap control limits for robust M-estimator chart by applying the bootstrap method, called resampling, which could not demand assumptions about pre-distribution when the process is skewed and/or the normality assumption is doubt. The results obtained in this study are summarized as follows : bootstrap M-estimator control chart is developed for applying bootstrap method to M-estimator chart, which is more robust to keep ARL when process contain contaminate quality characteristic.

Comparison of Some Nonparametric Statistical Inference for Logit Model (로짓모형의 비모수적 추론의 비교)

  • 정형철;김대학
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.355-366
    • /
    • 2002
  • Nonparametric statistical inference for the parameter of logit model were examined. Usually nonparametric approach is milder than parametric approach based on normal theory assumption. We compared the two nonparametric methods for legit model, the bootstrap and random permutation in the sense of coverage probability. Monte Carlo simulation is conducted for small sample cases. Empirical power of hypothesis test and coverage probability for confidence interval estimation were presented for simple and multiple legit model respectively. An example were also introduced.

Bootstrapping trimmed estimator in statistical inference (붓스트랩방법을 활용한 절사추정량의 이론 및 응용연구)

  • 이재창;전명식;강창완
    • The Korean Journal of Applied Statistics
    • /
    • v.9 no.2
    • /
    • pp.1-11
    • /
    • 1996
  • As an estimate of a location parameter for a given data set, $\alpha$-trimmed mean has been studied for a long time by many statisticians because of its nice propoerties including robustness. However, its performance depends on the proportion of trimming say $\alpha$. In this paper, we suggest a data-driven choice of $\alpha$ and study its validity. Also, we suggest a new estimator and consider double-bootstrap to improve its performance. By using simulation study, the proposed method is compared with the exiting one in various cases. Real data sets are also analyzed by using the proposed method.

  • PDF

Uncertainty Analysis of Stage-Discharge Curve Using Bayesian and Bootstrap Methods (Bayesian과 Bootstrap 방법을 이용한 수위-유량 관계곡선의 불확실성 분석)

  • Lim, Jonghun;Kwon, Hyungsoo;Joo, Hongjun;Wang, Won-joon;Lee, Jongso;You, Younghoon;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • The objective of this study is to reduce the uncertainty of the river discharge estimation method using the stage-discharge relation curve. It is necessary to consider the quantitative and accurate estimation method because the river discharge data is essential data for hydrological interpretation and water resource management. For this purpose, the parameters estimated by Bayesian and Bootstrap methods are compared with the ones obtained by stage-discharge relation curve. In addition, the Bayesian and Bootstrap methods are applied to assess uncertainty and then those are compared with the confidence intervals of the results from standard error method which has t-distribution. From the results of this study, The estimated value of the regression analysis developed through this study is less than 1 ~ 5%. Also It is confirmed that there are some areas where the applicability is better than the existing one according to the water level at each point. Therefore, if we use more suitable method according to the river characteristics, we could obtain more reliable discharge with less uncertainty.