본 연구에서는 Monte-Carlo 모형, AR(1)모형, PAR(1) 모형과 같은 추계학적 모형의 잔차값을 무작위적 복원추출하여 연 및 월 하천 유출량자료를 모의발생하였다. Bootstrap이라고 불리우는 이 복원추출방법은 자료의 모집단의 가정이 필요없다는 장점이 있으며 자료로부터 직접 통계적 분포형을 추정하는 방법으로써 자료의 순위변동법을 이용한다. 본 연구에서는 이 방법을 용담지점에 적용하였으며 Bootstrap 방법으로 모의발생된 하천 유출량자료의 거동을 검토하기 하기 위해 관측 유출량과 모의 발생된 유출량의 통계치를 산정하여 비교하였다. 그 결과 기존의 방범과 Bootstrap 방법 모두 평균, 표준편차, 자기상관성은 잘 재현하였으나 왜곡도 계수의 경우 Bootstrap 방법이 더 뛰어남을 확인할 수 있었다.
시뮬레이션 출력 분석 방법인 이동 블록 부트스트랩이나 정상 부트스트랩, 그리고 임계값 부트스트랩은 자기상관성이 존재하는 데이터에 적용 가능한 표본 재추출 방법론들이다. 이러한 부트스트랩 방법들은 데이터의 정상성을 가정하여 적용해 왔다. 그러나 실제 자료 또는 시뮬레이션 출력에 계절성이나 추세를 동반하여 그 정상성을 보장할 수 없는 경우에는 부트스트랩을 시뮬레이션 출력 분석에 적용하지 못하였다. 시뮬레이션 출력 분석 기법 중 자기상관성을 가장 잘 묘사하는 방법은 임계값 부트스트랩 방법이다. 임계값 부트스트랩은 자료의 임계값을 기준으로 주기를 형성하여 재추출하는 방법으로써 계절성이 존재하는 데이터에 부트스트랩을 적용한다면 임계값 부트스트랩과 유사한 정확도를 얻을 수 있다. 본 논문에서는 계절성이 존재하는 시계열 자료에 대한 부트스트랩 적용 가능성을 제시 및 검증해보고자 한다.
비선형 시계열인 확률계수 자기회귀(random coefficient autoregressive; RCA) 모형에 대하여 여러 가지 방법을 이용한 추정량의 신뢰구간 비교하였다. RCA 모형에 대하여 자료의 분포를 가정하지 않아도 되는 Quasi 스코어 추정량과 Huber, Tukey, Andrew, Hempal 4가지 유계함수를 이용한 M-Quasi 스코어 추정량을 제시하였다. 이러한 추정량에 대하여 표준 붓스트랩 방법, 백분위수 붓스트랩 방법, 스튜던트화 붓스트랩 방법, 하이브리드 붓스트랩 방법을 이용한 신뢰구간을 구하였다. 모의실험을 통하여 RCA 모형의 오차항의 분포가 정규분포, 오염정규분포, 이중지수분포를 따를 때 Quasi 스코어 추정량과 M-Quasi 스코어 추정량들의 근사적 신뢰구간과 네가지 붓스트랩 방법을 이용한 신뢰구간을 비교하였다.
Communications for Statistical Applications and Methods
/
제19권3호
/
pp.405-414
/
2012
층화확률추출은 모집단을 어떤 층화기준에 의해 여러 층으로 분할한 다음 각 층으로부터 독립적으로 표본을 임의추출하는 방법으로 여러 가지 장점을 가지고 있어 실제 조사에서 많이 활용되고 있다. 본 연구에서는 대규모 표본조사에서 많이 사용하고 있는 층화확률추출을 사용하여 추출된 표본을 통해 모평균에 대한 붓스트랩 추정량과 신뢰구간 및 가설검정 등 통계적 추론에 대하여 연구하였다. 층화모집단에서의 모평균의 추정량과 관련된 극한 분포이론들을 기초로 붓스트랩 일치성을 근거로 층화 모평균에 대해 표준 붓스트랩 방법, 백분위수 붓스트랩 방법, 스튜던트화 붓스트랩 방법을 활용한 신뢰구간과 붓스트랩 가설검정 방법을 제안하였으며, 모의실험을 통해 신뢰구간 추정 방법들의 유효성을 확인하였다.
성향점수 매칭은 관찰연구에서 처리효과 추정 시 혼란변수에 의한 편의를 줄이기 위해 자주 사용되는 방법이다. 매칭을 위해 처리군에 대응되는 대조군 선정 시 처리군의 일부가 탈락되는 경우가 발생할 수 있는데, 이로 인해 편의가 발생할 수 있다. 최근, Austin (2017)의 연구에서 이중 성향점수 보정(double propensity score adjustment)방법을 사용하는 것이 이에 대한 해결책이 될 수 있음을 제시하였다. 하지만, 처리효과 추정치의 표준오차는 이론적 추정치가 제시되지 않아 추정에 어려움이 있다. 본 연구에서는 이중 성향점수 보정 방법을 이용한 처리효과 추정치의 표준오차 추정을 위하여 두 가지 붓스트랩 방법을 제안한다. 첫 번째는 원 자료에서 성향점수 매칭 후 매칭 된 표본에서 붓스트랩 표본을 얻는 방법(simple 붓스트랩)이고, 두 번째는 원 자료에서 붓스트랩을 먼저 시행하고 각 붓 스트랩 표본에서 성향점수 매칭을 하는 방법(complex 붓스트랩)이다. 두 방법의 성능을 비교하기 위하여 다양한 상황을 가정하여 모의실험을 시행한 결과 complex 붓스트랩 방법이 경험적 표준오차와 더 가까운 값으로 추정함을 알 수 있었다. 95% 신뢰구간의 포함확률도 complex 방법을 사용했을 때 0.95에 훨씬 가까웠다. 실제 자료에 적용하였을 때에도 simple 방법은 complex 방법에 비해 표준오차를 작게 추정하였다.
수문기상자료의 빈도해석은 풍수해에 따른 대응 및 시설물의 설계기준에 있어 중요한 요소 중 하나이다. 일반적으로 수문기상자료에 대한 빈도해석의 경우 관측자료는 통계적으로 정상성을 가진다고 가정하고, 확률분포의 매개변수를 고려하는 매개변수적 방법을 적용하고 있다. 이러한, 매개변수적 빈도해석을 위해서는 신뢰성 있는 충분한 자료의 수집이 필요하지만, 강수량과 다르게 적설량의 경우 계절적 특성과 함께 최근에는 기후변화로 인한 적설량 관측일수 및 평균 최심신적설량이 감소하기 때문에 부족한 자료에 대한 문제점을 보완할 필요가 있다. 이에 본 연구에서는 매개변수 빈도해석 방법과 부족한 자료의 문제점을 보완할 수 있는 표본 재추출 기법인 Bootstrap방법과 SIR(Sampling Importance Resampling)알고리즘을 적용하여 적설량의 빈도해석을 실시하였다. 58개 기상관측소에 대해 재추출된 일 최대 최심신적설량 자료를 이용한 비매개변수적 빈도해석을 통해 확률적설량을 산정하고 이를 비교 분석하였다. 빈도별 확률적설량의 증감률을 검토한 결과 매개변수적 빈도해석과 비매개변수적 빈도해석에서 증감률을 나타내는 지점들이 대부분 일치하는 것으로 나타났다. 확률적설량은 관측 자료와 Bootstrap방법에서 -19.2%~3.9%, Bootstrap방법과 SIR알고리즘에서 -7.7%~137.8% 정도의 차이를 보였다. 표본 재추출 기법은 관측표본이 적은 적설량의 빈도해석 및 불확실성 범위의 제시가 가능함을 확인할 수 있었고, 이는 여름철 태풍과 같이 계절적 특성을 지닌 다른 자연재난의 해석에도 적용될 수 있을 것으로 판단된다.
본 연구에서는 기상청 산한 56개 기상관측소의 연최대치계열 일 강우자료를 대상으로 Bootstrap기법과 SIR알고리즘을 이용하여 표본을 재추출한 후, 빈도해석을 적용하여 결과를 비교검토 하였다. SIR알고리즘은 기존에 발생되었던 극한 사상에 가중치를 두어 표본을 재추출하는 방법으로 과거에 발생한 극한사상이 기후변화에 의해서 더욱 빈발하게될 것 이라는 가정에 기초한다고 할 수 있다. 반면에 Bootstrap기법은 현재 발생한 사상에 동일한 가중치를 두어 표본을 재추출하는 방법이다. 따라서 두 방법의 차이를 계산하여 기후변화로 인한 극한강우의 빈도별 확률강우량의 변화를 산정할 수 있다. 비교결과 SIR알고리즘에 의하여 재추출된 강우를 이용하여 산정된 확률강우량의 경우, Bootstrap기법에 의해서 재추출된 강우를 이용하여 산정한 확률강우량에 비해 지점에 따라 작게는 -10%정도의 감소와 크게는 60%정도의 차이를 보임을 확인하였다.
본 논문에서는 다변량 자료의 위치모수에 대한 로버스트 추정량으로 공간중위수에 대한 절사 추정량을 제안하였다. 최적절사율은 붓스트랩 방법을 이용하여 결정하였으며, 이중붓스트랩을 활용하여 추정된 절사공간중위수의 공분산행렬을 추정하였다. 모의실험 결과 붓스트랩 방법에 의한 절사공간중위수는 자료가 다변량 코시분포를 따르는 경우 기존 공간중위수에 비하여 작은 평균제곱오차를 보여 효율적인 추정량으로 나타났다. 아울러 이중붓스트랩을 이용한 절사추정량의 공분산행렬 추정량은 단순붓스트랩 방법에 의하여 추정된 공분산행렬이 갖는 과소추정의 문제를 해결하는 방법으로 나타났다.
오차항의 분포가 정규분포에 따르지 않는 비선형 시계열인 ARCH모형의 예측구간을 설정하는데 붓스트랩 방법과 근사적 방법간의 포함비율에 대한 정확성을 비교한다. 이 때 모형에서 모수를 추정하는 방법으로서는 분포에 대한 가정을 필요로 하지 않는 quasi-score 추정함수를 이용한 추정 법과 로버스트 추정 함수인 M quasi-score 추정 함수를 이용한 추정법을 사용한다. 추정된 모수를 이용하여 예측구간의 정확성을 비교하고 마지막으로 소비자 물가지수 자료를 이용하여 실제 예측구간을 구하는데 적용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.