• Title/Summary/Keyword: Boost-buck converter

Search Result 282, Processing Time 0.024 seconds

Single-Phase Bridgeless Zeta PFC Converter with Reduced Conduction Losses

  • Khan, Shakil Ahamed;Rahim, Nasrudin Abd.;Bakar, Ab Halim Abu;Kwang, Tan Chia
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.356-365
    • /
    • 2015
  • This paper presents a new single phase front-end ac-dc bridgeless power factor correction (PFC) rectifier topology. The proposed converter achieves a high efficiency over a wide range of input and output voltages, a high power factor, low line current harmonics and both step up and step down voltage conversions. This topology is based on a non-inverting buck-boost (Zeta) converter. In this approach, the input diode bridge is removed and a maximum of one diode conducts in a complete switching period. This reduces the conduction losses and the thermal stresses on the switches when compare to existing PFC topologies. Inherent power factor correction is achieved by operating the converter in the discontinuous conduction mode (DCM) which leads to a simplified control circuit. The characteristics of the proposed design, principles of operation, steady state operation analysis, and control structure are described in this paper. An experimental prototype has been built to demonstrate the feasibility of the new converter. Simulation and experimental results are provided to verify the improved power quality at the AC mains and the lower conduction losses of the converter.

A Fully Soft Switched Two Quadrant Bidirectional Soft Switching Converter for Ultra Capacitor Interface Circuits

  • Mirzaei, Amin;Farzanehfard, Hosein;Adib, Ehsan;Jusoh, Awang;Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This paper describes a two quadrant bidirectional soft switching converter for ultra capacitor interface circuits. The total efficiency of the energy storage system in terms of size and cost can be increased by a combination of batteries and ultra capacitors. The required system energy is provided by a battery, while an ultra capacitor is used at high load power pulses. The ultra capacitor voltage changes during charge and discharge modes, therefore an interface circuit is required between the ultra capacitor and the battery. This interface circuit must have good efficiency while providing bidirectional power conversion to capture energy from regenerative braking, downhill driving and the protecting ultra capacitor from immediate discharge. In this paper a fully soft switched two quadrant bidirectional soft switching converter for ultra capacitor interface circuits is introduced and the elements of the converter are reduced considerably. In this paper, zero voltage transient (ZVT) and zero current transient (ZCT) techniques are applied to increase efficiency. The proposed converter acts as a ZCT Buck to charge the ultra capacitor. On the other hand, it acts as a ZVT Boost to discharge the ultra capacitor. A laboratory prototype converter is designed and realized for hybrid vehicle applications. The experimental results presented confirm the theoretical and simulation results.

Analysis, Design and Implementation of Flexible Interlaced Converter for Lithium Battery Active Balancing in Electric Vehicles

  • Dai, Shuailong;Wang, Jiayu;Li, Teng;Shan, Zhifei;Wei, Yewen
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.858-868
    • /
    • 2019
  • With the widespread use of modern clean energy, lithium-ion batteries have become essential as a more reliable energy storage component in the energy Internet. However, due to the difference in monomers, some of the battery over-charge or over-discharge in battery packs restrict their use. Therefore, a novel multiphase interleaved converter for reducing the inconsistencies of the individual cells in a battery pack is proposed in this paper. Based on the multiphase converter branches connected to each lithium battery, this circuit realizes energy transferred from any cell(s) to any other cell(s) complementarily. This flexible interlaced converter is composed of an improved bi-directional Buck-Boost circuit that is presented with its own available control method. A simulation model based on the PNGV model of fundamental equalization is built with four cells in PSIM. Simulation and experimental results demonstrate that converter and its control achieve simple and fast equalization. Furthermore, a comparison of traditional methods and the HNFABC equalization is provided to show the performance of the converter and the control of lithium-based battery stacks.

A Bidirectional Three-phase Push-pull Zero-Voltage Switching DC-DC Converter (양방향 3상 푸쉬풀 ZVS DC-DC 컨버터)

  • Kwon, Min-Ho;Han, Kook-In;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.403-411
    • /
    • 2013
  • This paper proposes an isolated bidirectional three-phase push-pull dc-dc converter for high power application such as eco-friendly vehicles, renewable energy systems, energy storage systems, and solid-state transformers. The proposed converter achieves ZVS turn-on of all switches and volume of passive components is small by an effect of three-phase interleaving. The proposed converter has identical switching pattern for both boost and buck mode, and therefore can provide seamless characteristic at the mode transition. A 3kW prototype of the proposed converter has been built and tested to verify the validity of the proposed operation.

A Bidirectional Hybrid Switching Full-Bridge Converter with Active Clamp Circuit for V2G Applications (V2G 응용을 위한 능동클램프 회로를 가진 양방향 하이브리드 스위칭 풀브리지 컨버터)

  • Vuand, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.335-336
    • /
    • 2016
  • This paper introduces a bidirectional full-bridge converter with new active damp structure. The proposed active damp circuit can damp the oscillating voltage across the rectifier diodes with a smaller voltage stress of the damping capacitor and eliminate the circulating current. In addition, the proposed converter can achieve additional advantages such as nearly ZCS switching for leading-leg switches and no recovery current for rectifier-bridge by the suitable design of the damp capacitor to resonate with leakage inductor. Since the ZVS is achieved for both leading-leg and lagging-leg switches by the magnetizing current of the transformer, it can be achieved regardless of the load variation. A 3.3 kW prototype converter is implemented for vehicle-to-grid (V2G) application and the advantages of the proposed converter are verified by the experiments. The maximum efficiencies of 98.2% and 97.6% have been achieved for the buck mode and boost mode operation, respectively.

  • PDF

Regenerative Current Control Method of Bidirectional DC/DC Converter for EV/HEV Application

  • Lee, Jung-Hyo;Jung, Doo-Yong;Lee, Taek-Kie;Kim, Young-Ryul;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.97-105
    • /
    • 2013
  • The control method of the bidirectional DC/DC converter for instantaneous regenerative current control is described in this paper. The general method to control the DC/DC converter is the output voltage control. However, the regenerative current cannot be controlled to be constant with this control method. To improve the performance of the conventional control method, the DC-link voltage of the inverter is controlled within the tolerance range by the instantaneous boost and buck operations of the bidirectional DC/DC converter. By the proposed control method, the battery current can be controlled to be constant regardless of the motor speed variation. The improved performance of the DC/DC converter controlled by the proposed control method is verified by the experiment and simulation of the system with the inverter and IPMSM(Interior Permanent Magnet Synchronous Motor) which is operated by the reduced practical speed profile.

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.

Development of DC Controller for Battery Control for Elevator Car

  • Lee, Sang-Hyun;Kim, Sangbum
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.103-111
    • /
    • 2021
  • Among transport vehicles, Special Vehicles (SVs) are seriously exposed to energy and environmental problems. In particular, elevator cars used when moving objects in high-rise buildings increase the engine's rotational speed (radian per second: RPM). At this time, when the vehicle accelerates rapidly while idling, energy consumption increases explosively along with the engine speed, and a lot of soot is generated. The purpose of this paper is to develop a bi-directional DC-DC converter for control of vehicle power and secondary battery used in an elevated ladder vehicle (EC) used in the moving industry. As a result of this paper, the performance test of the converter was conducted. The charging/discharging state of the converter was simulated using DC power supply and DC electronic load, and a performance experiment was conducted to measure the input/output power of the converter through a power meter. Through this experimental result, it was confirmed that the efficiency was more than 92% in Buck mode and Boost mode at maximum 1.2kW output.

Design of the Inverter Motor Drive System Applied to PFC using Interleaving Method (인터리빙 PFC를 적용한 모터구동 인버터 시스템 설계)

  • Yoon, Seong-Sik;Choi, Hyun-Eui;Kim, Tae-Woo;Ahn, Ho-Kyun;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, using interleaved power factor correction how to improve the inverter efficiency studied. Interleaved method can reduce the conduction losses and the inductor energy. Generally, critical conduction mode (CRM) boost PFC converter used low power level because of the high peak currents. if you use the interleaved mode, CRM PFC can be used medium or high power application. interleaved CRM PFC can reduce current ripple for higher system reliability and size of buck capacitor and EMI filter size. Interleaved CRM PFC that is installed in front of inverter can maintain the constant voltage regardless of the input voltage.

Family of Dual-Input Dual-Buck Inverters Based on Dual-Input Switching Cells

  • Yang, Fan;Ge, Hongjuan;Yang, Jingfan;Dang, Runyun;Wu, Hongfei
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1015-1026
    • /
    • 2018
  • A family of dual-DC-input (DI) dual-buck inverters (DBIs) is proposed by employing a DI switching cell as the input of traditional DBIs. Three power ports, i.e. a low voltage DC input port, a high voltage DC input port and an AC output port, are provided by the proposed DI-DBIs. A low voltage DC source, whose voltage is lower than the peak amplitude of the AC side voltage, can be directly connected to the DI-DBI. This supplies power to the AC side in single-stage power conversion. When compared with traditional DBI-based two-stage DC/AC power systems, the conversion stages are reduced, and the power rating and power losses of the front-end Boost converter of the DI-DBI are reduced. In addition, five voltage-levels are generated with the help of the two DC input ports, which is a benefit in terms of reducing the voltage stresses and switching losses of switches. The topology derivation method, operation principles, modulation strategy and characteristics of the proposed inverter are analyzed in-depth. Experimental results are provided to verify the effectiveness and feasibility of the proposed DI-DBIs.