• Title/Summary/Keyword: Boost DC/DC converter

Search Result 704, Processing Time 0.026 seconds

PFM-Mode Boost DC-DC Convertor for Mobile Multimedia Application (휴대용 멀티기기를 위한 PFM방식의 승압형 DC-DC 변환기)

  • Kim, Ji-Man;Park, Yong-Su;Song, Han-Jung
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.14-18
    • /
    • 2010
  • In this paper, we describe a CMOS DC-DC converter with a variable output voltage(5-7V @100mA) for a portable battery-operated system applications. The proposed DC-DC converter is used along with a Pulse-Frequency Modulation (PFM) method and consists of reference circuit, a feedback resistor, a controller, and an internal oscillator. The integrated DC-DC converter with two external passive components(L,C) has been designed and fabricated on a 0.5um 2-poly 3-metal CMOS process and could be applied to the Personal Digital Assistants(PDA), cellular Phone, Laptop Computer, etc.

Single Input Multi Output DC/DC Converter: An Approach to Voltage Balancing in Multilevel Inverter

  • Banaei, M.R.;Nayeri, B.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1537-1543
    • /
    • 2014
  • This paper presents a new DC/AC multilevel converter. This configuration uses single DC sources. The proposed converter has two stages. The first stage is a DC/DC converter that can produce several DC-links in the output. The DC/DC converter is one type of boost converter and uses single inductor. The second stage is a multilevel inverter with several capacitor links. In this paper, one single input multi output DC-DC converter is used in order to voltage balancing on multilevel converter. In addition, as compare to traditional multilevel inverter, presented DC/AC multilevel converter has less on-state voltage drop and conduction losses. Finally, in order to verify the theoretical issues, simulation and experimental results are presented.

Improved Full Wave Mode ZVT PWM DC-DC Converters (개선된 전파형 ZVT PWM DC-DC 컨버터)

  • 김태우;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • In this thesis, improved full wave mode ZVT(Zero-Voltage-Transition) PMW DC-DC Converters are presented to maximize the regeneration ratio of resonant energy by only putting an additional diode In series with the auxiliary switch. The operation of the auxiliary switch in a half wave mode makes it possible soft switching operation of all switches including the auxiliary switch whereas it is turned off with hard switching in conventional converter. The increase of the regeneration ratio to resonant energy results in low commutation losses and minimum voltage and current stresses. The operation principles of the improved ZVT PWM DC-DC Converters are theoretically analyzed using the boost converter topology as an example. Both theoretical analysis and experimental results verify the validity of the PWM boost converter topology with the improved full wave mode ZVT PWM converters.

The new Soft-Switching AC-DC Boost Type Converter using Lossless Snubber (무손실 스너버회로를 이용한 새로운 소프트 스위칭 AC-DC승압형 컨버터)

  • Mun Sang-Pil;Suh Ki-Young;Kim Young-Mun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1226-1228
    • /
    • 2004
  • A novel lossless passive snubber is proposed for soft switching the boost type converters. The proposed snubber does not use any auxiliary switches. but uses two identical snubber capacitors which are charged in parallel at turn off of the main switch and discharged in series at turn on automatically, and the discharged energy is recovered effectively (more than $95[\%]$ recovery) into the output capacitor. Thus, the snubber provides zero voltage switching for the converter main switch, reducing both the turn off losses and the electromagnetic interference(EMI) noise, whitch improves the converter performance. The experimental results of a 20[kHz] 600[W] DC-DC boost converter and a single-phase AC-DC boost rectifier with the new snubber are presented.

  • PDF

A High Efficiency DC-DC Boost Converter with Passive Regenerative Snubber

  • Radika, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.501-507
    • /
    • 2014
  • This paper describes the improvement in converter efficiency by reducing the switching loss and by recovering the snubber stored energy. A capacitive based passive regenerative snubber circuit is modeled for a dc-dc boost converter. The proposed snubber is mainly used to reduce the turn-off loss of the main switch. The energy recovery process and the turn-off loss depends on the size of the snubber capacitance; therefore, the conventional and the proposed converters are designed for high and low input voltage conditions with different sizes of the snubber capacitance. Based on the results obtained, the snubber capacitors are classified as small, normal and large snubbers. The Matlab simulation results obtained are presented.

A Study on the High-Power-Factor, High-Efficiency AC/DC Boost Converter with Non-Dissipative Snubber (무손실 스너버를 적용한 고역률, 고효률 AC/DC Boost 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.112-115
    • /
    • 2002
  • Previous AC/DC PFC Boost Converter perceives feed forward signal of input and feedback signal of output for average current-mode control. Previous Boost Converter, the quantity of input current will be decreased by the decrease of output current in light load, and also power factor comes to be decreased. Also the efficiency of converter will be decreased by the decrease of power factor. The proposed converter presents the good PFC(Power Factor Correction), low line current hormonic distortions and tight output voltage regulations using non-dissipative snubber. The proposed converter also has a high efficiency by non-dissipative snubber circuit. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

Novel Self-Excited DC-DC Converters (새로운 자려식 DC-DC 컨버터)

  • Lee, Soung-Ju;Ahn, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2505-2507
    • /
    • 1999
  • This paper presents novel self excited DC-DC converters such as Buck-boost type, Buck type and also non-inverting Buck-boost type. The proposed converters has the following advantages: simple topology, small number of circuit components, easy control methode. Therefore, these converters are suitable for the portable appliances with battery source. Theoretical analysis and experimental results for SOW class Buck-boost type self oscillation DC-DC converter have been obtained, which demonstrate the high efficiency and good performance.

  • PDF

Efficiency Characteristics of DC-DC Boost Converter Using GaN, Cool MOS, and SiC MOSFET (GaN, Cool MOS, SiC MOSFET을 이용한 DC-DC 승압 컨버터의 효율 특성)

  • Kim, Jeong Gyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, recent researches on new and renewable energy have been conducted due to problems such as energy exhaustion and environmental pollution, and new researches on high efficiency and high speed switching are needed. Therefore, we compared the efficiency by using high speed switching devices instead of IGBT which can't be used in high speed switching. The experiment was performed theoretically by applying the same parameters of the high speed switching devices which are the Cool MOS of Infineon Co., SiC C3M of Cree, and GaN FET device of Transform, by implementing the DC-DC boost converter and measuring the actual efficiency for output power and frequency. As a result, the GaN FET showed good efficiency at all switching frequency and output power.

  • PDF

Study of DC-DC Converter with Continuous output Current for Battery Charger (배터리 충전기를 위한 연속전류를 갖는 DC-DC 컨버터에 관한 연구)

  • Bayasgalan, Bayasgalan;Kim, Hong-Sung;Kim, Young-Sik;Lee, Young-Jin;Zayabaatar, Zayabaatar;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.193-195
    • /
    • 2008
  • This paper proposed dc-dc converter with continuous output current for battery charger. If we charge energy storage device by conventional boost converter, current flows into the discontinuous and as a result reduces the life-time of battery. The output voltage of dc-dc converter should be higher than voltage of across the battery, specially if charging by PV there is a fluctuation of voltage due change of insolation and temperature, therefore will boost and regulate this voltage. The proposal converter includes forward converter and the output voltage of the proposal converter looks like an input voltage and forward output voltage's add. This topology was tested on simulation and experimentation. Simulation and experimentation results indicated that the proposal topology is useful for battery charging because the output current of the converter flows continuously and perfectly.

  • PDF

A Novel Active Boost Power Converter for single phase SRM (단상 SRM 구동을 위한 새로운 능동 부스트 전력 컨버터)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Heeㅋ;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.277-279
    • /
    • 2008
  • In this paper, a novel active boost converter for SR drive is proposed. An active capacitor circuit is added in the front-end. Based on this active capacitor network, when boost switch turns off, this network seems as passive capacitor network. And the voltage of boost capacitor can keep balance with dc-link voltage automatically. In the capacitor network, discharging voltage is general dc-link voltage in parallel-connected capacitors; charging voltage is double dc-link voltage in series-connected capacitors. When boost switch turns on, two capacitors are connected in series, and discharging voltage is up to double dc-link voltage. So the fast excitation current can be obtained from this mode. Profit from fast excitation and fast demagnetization mode, the performance and output power can be improved. Some computer simulations are done to verify the performance of proposed converter.

  • PDF