• Title/Summary/Keyword: Bone to Implant Contact

Search Result 257, Processing Time 0.019 seconds

The histometric analysis of osseointegration in hydroxyapatite surface dental implants by ion beam-assisted deposition

  • Kim, Min-Kyung;Choi, Jung-Yoo;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Sung-Tae;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.363-372
    • /
    • 2008
  • Purpose: This study compared the effects of coating implants with hydroxyapatite (HA) using an ion beam-assisted deposition (IBAD) method prepared with machined, anodized, sandblasted and large-grit acid etched (SLA) surfaces in minipigs, and verified the excellency of coating method with HA using IBAD. Material and Methods: 4 male Minipigs(Prestige World Genetics, Korea), 18 to 24 months old and weighing approximately 35 to 40 kg, were chosen. All premolars and first molars of the maxilla were carefully extracted on each side. The implants were placed on the right side after an 8 week healing period. The implant stability was assessed by resonance frequency analysis (RFA) at the time of placement. 40 implants were divided into 5 groups; machined, anodized, anodized plus IBAD, SLA, and SLA plus IBAD surface implants. 4 weeks after implantation on the right side, the same surface implants were placed on the left side. After 4 weeks of healing, the minipigs were sacrificed and the implants were analyzed by RFA, histology and histometric. Results: RFA showed a mean implant stability quotient (ISQ) of $75.625{\pm}5.021$, $76.125{\pm}3.739$ ISQ and $77.941{\pm}2.947$ at placement, after 4 weeks healing and after 8 weeks, respectively. Histological analysis of the implants demonstrated newly formed, compact, mature cortical bone with a nearby marrow spaces. HA coating was not separated from the HA coated implant surfaces using IBAD. In particular, the SLA implants coated with HA using IBAD showed better contact osteogenesis. Statistical and histometric analysis showed no significant differences in the bone to implant contact and bone density among 5 tested surfaces. Conclusion: We can conclude that rough surface implants coated with HA by IBAD are more biocompatible, and clinical, histological, and histometric analysis showed no differences when compared with the other established implant surfaces in normal bone.

Effects of adjacent periodontitis on osseointegrated dental implants

  • Keun-Soo Ryoo;Kyoung-Hwa Kim;Young-Dan Cho;Yang-Jo Seol ;Young Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.4
    • /
    • pp.280-291
    • /
    • 2024
  • Purpose: This study aimed to investigate whether new-onset periodontitis or apical periodontitis in the adjacent teeth affects osseointegrated dental implants in a beagle dog model. Methods: One control group and 2 experimental groups (periodontitis and apical periodontitis groups) were defined based on the presence of experimental periodontitis or apical periodontitis, with 1 beagle dog randomly assigned to each group. The mandibular second and fourth premolars on both sides of the 3 beagles were extracted. Eight weeks after extraction, 4 bone-level implant fixtures, 2 on both sides of each mandible, were placed in each beagle. Six weeks after implant surgery, healing abutments were connected. After sufficient osseointegration, plaque control was performed in the control group, while periodontitis and apical periodontitis were induced in the experimental groups. The beagles were euthanized for histological analyses 20 weeks after induction of experimental periodontitis. Statistical analyses were performed using the Kruskal-Wallis test with the Bonferroni correction to compare the 3 groups. Results: The implants in the control and apical periodontitis groups were well-maintained, while those in the periodontitis group showed clinical signs of inflammation with bone resorption. The bone-to-implant contact (BIC) and bone area values in the periodontitis group were lower than those in the other groups. The distance between the implant shoulder and the first BIC was significantly greater in the periodontitis group than in the control group (P<0.05). Conclusions: The presence of periodontitis in adjacent teeth can pose a risk to dental implants, potentially resulting in peri-implantitis. However, this was not observed for apical periodontitis. Within the limitations of this study, periodontal care is necessary to reduce the impact of periodontitis in adjacent teeth on osseointegrated implants.

On the osseointegration of zirconia and titanium implants installed at defect site filled with xenograft material (이종골 이식을 동반한 지르코니아와 타이타늄 임플란트의 골유착에 관한 연구)

  • Kim, Sung-Won;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Purpose: The purpose of this study was to compare zirconia implants with titanium implants from the view point of biomechanical stability and histologic response on osseointegration when those were placed with xenograft materials. Materials and methods: Specimens were divided into two groups; the control group was experimented with eighteen titanium implants which had anodized surface and the experimental group was experimented with eighteen sandblasted zirconia (Y-TZP) implants. At the tibias of six pigs, implants were installed into bone defect sites prepared surgically and treated with resorbable membranes and bovine bone. Two pigs were sacrificed after 1, 4 and 12 weeks respectively. Each implant site was sampled and processed for histologic and histomorphometric analysis. The stability of implants was evaluated with a $Periotest^{(R)}$. And the interfaces between bone and the implant were observed with a scanning electron microscope. Results: In stability analysis there was no significant difference between Periotest values of the control group and the experimental group. In histologic analysis with a light microscope after 4 weeks, there was new bone formation with the resorption of bovine bone and the active synthesis of osteoblasts in both groups. In bone-implant contact percentage there was significant difference between both groups (P<.05). In bone area percentage there was no significant difference between both groups. In analysis of both groups with a scanning electron microscope there was a gap between bone and a surface at 4 weeks and it was filled up with bone formed newly at 12 weeks. Conclusion: When accompanied by xenograft using membrane, bone to implant contact percentage of zirconia implants used in this experiment was significantly less than that of the titanium implants by surface treatment of anodic oxidation. So, it is considered that the improvement of zirconia implant is needed through ongoing research on surface treatment methods for its practical use.

Impact of lattice versus solid structure of 3D-printed multiroot dental implants using Ti-6Al-4V: a preclinical pilot study

  • Lee, Jungwon;Li, Ling;Song, Hyun-Young;Son, Min-Jung;Lee, Yong-Moo;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.338-350
    • /
    • 2022
  • Purpose: Various studies have investigated 3-dimensional (3D)-printed implants using Ti6Al-4V powder; however, multi-root 3D-printed implants have not been fully investigated. The purpose of this study was to explore the stability of multirooted 3D-printed implants with lattice and solid structures. The secondary outcomes were comparisons between the 2 types of 3D-printed implants in micro-computed tomographic and histological analyses. Methods: Lattice- and solid-type 3D-printed implants for the left and right mandibular third premolars in beagle dogs were fabricated. Four implants in each group were placed immediately following tooth extraction. Implant stability measurement and periapical X-rays were performed every 2 weeks for 12 weeks. Peri-implant bone volume/tissue volume (BV/TV) and bone mineral density (BMD) were measured by micro-computed tomography. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were measured in histomorphometric analyses. Results: All 4 lattice-type 3D-printed implants survived. Three solid-type 3D-printed implants were removed before the planned sacrifice date due to implant mobility. A slight, gradual increase in implant stability values from implant surgery to 4 weeks after surgery was observed in the lattice-type 3D-printed implants. The marginal bone change of the surviving solid-type 3D-printed implant was approximately 5 mm, whereas the value was approximately 2 mm in the lattice-type 3D-printed implants. BV/TV and BMD in the lattice type 3D-printed implants were similar to those in the surviving solid-type implant. However, BIC and BAFO were lower in the surviving solid-type 3D-printed implant than in the lattice-type 3D-printed implants. Conclusions: Within the limits of this preclinical study, 3D-printed implants of double-rooted teeth showed high primary stability. However, 3D-printed implants with interlocking structures such as lattices might provide high secondary stability and successful osseointegration.

BONE RESPONSE OF TWO DIFFERENT SURFACE TITANIUM SUBPERIOSTEAL IMPLANTS - ANODIZED SURFACE, IBAD HA COATING SURFACE (티타늄 임플랜트의 두 가지 표면처리방식에 대한 골반응 - 양극 산화표면, IBAD HA 코팅 표면)

  • Lee, In-Ku;Suh, Kyu-Won;Choi, Joon-Eon;Jung, Sung-Min;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.131-143
    • /
    • 2007
  • Statement of the problem: In case of poor bone quality or immediately loaded implant, various strategies have been developed focusing on the surface of materials to improve direct implant fixation to the bone. The microscopic properties of implant surfaces play a major role in the osseous healing of dental implant. Purpose of study: This study was undertaken to evaluate bone response of ion beam-assisted deposition(IBAD) of hydroxyapatite(HA) on the anodized surface of subperiosteal titanium implants. Material and methods: Two half doughnut shape subperiosteal titanium implants were made. The control group was treated with Anodized surface treatment and the test group was treated with IBAD of HA on control surface. Then two implants inserted together into the subperiosteum of the skull of 30 rats and histological response around implant was observed under LM(light microscope) and TEM(transmission electron microscope) on 4th, 6th and 8th week. Results: Many subperiosteal implants were fixed with fibrous connective tissue not with bony tissue because of weak primary stability. The control group observed poor bone response and there was no significant change at any observation time. However the test group showed advanced bone formation and showed direct bone to implant contact under LM on 8th week. The test group observed much rER in the cell of osteoblast but the control group showed little rER under TEM. Conclusions: The test group showed better bone formation than the control group at the condition of weak primary stability. With these results IBAD surface treatment method on Anodized surface, may be good effect at the condition of weak primary stability.

Efficacy of plasma treatment for surface cleansing and osseointegration of sandblasted and acid-etched titanium implants

  • Gang-Ho Bae;Won-Tak Cho;Jong-Ho Lee;Jung-Bo Huh
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.3
    • /
    • pp.189-199
    • /
    • 2024
  • PURPOSE. This study was conducted to evaluate the effects of plasma treatment of sandblasted and acid-etched (SLA) titanium implants on surface cleansing and osseointegration in a beagle model. MATERIALS AND METHODS. For morphological analysis and XPS analysis, scanning electron microscope and x-ray photoelectron spectroscopy were used to analyze the surface topography and chemical compositions of implant before and after plasma treatment. For this animal experiment, twelve SLA titanium implants were divided into two groups: a control group (untreated implants) and a plasma group (implants treated with plasma). Each group was randomly located in the mandibular bone of the beagle dog (n = 6). After 8 weeks, the beagle dogs were sacrificed, and volumetric analysis and histometric analysis were performed within the region of interest. RESULTS. In morphological analysis, plasma treatment did not alter the implant surface topography or cause any physical damage. In XPS analysis, the atomic percentage of carbon at the inspection point before the plasma treatment was 34.09%. After the plasma treatment, it was reduced to 18.74%, indicating a 45% reduction in carbon. In volumetric analysis and histometric analysis, the plasma group exhibited relatively higher mean values for new bone volume (NBV), bone to implant contact (BIC), and inter-thread bone density (ITBD) compared to the control group. However, there was no significant difference between the two groups (P > .05). CONCLUSION. Within the limits of this study, plasma treatment effectively eliminated hydrocarbons without changing the implant surface.

Enhancement of peri-implant bone formation via parathyroid hormone administration in a rat model at risk for medication-related osteonecrosis of the jaw

  • Park, Ji Young;Heo, Hyun A;Park, Suhyun;Pyo, Sung Woon
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.2
    • /
    • pp.121-131
    • /
    • 2020
  • Purpose: Dental implant-associated medication-related osteonecrosis of the jaw has been frequently reported in patients administered bisphosphonates (BPs) to prevent osteoporosis. The aim of this study was to investigate the effect of intermittent administration of parathyroid hormone (PTH) on peri-implant bone in the maxillae of ovariectomized rats systemically administered BPs. Methods: Thirty 8-week-old female Sprague-Dawley rats were randomly divided into 3 groups. The OVX-ZP group included ovariectomized rats administered 60 ㎍/kg of zoledronate once a week for 6 weeks and 30 ㎍/kg PTH after implant installation. The OVX-Z group included ovariectomized rats administered 60 ㎍/kg of zoledronate once a week for 6 weeks and saline after implant installation, and the control group included rats that underwent a sham operation and were then administered saline. Rats were sacrificed 4 weeks after implant placement for histomorphometric and micro-computed tomography (CT) analyses. Results: The average bone area percentage was greater in the OVX-ZP group than in the OVX-Z group (53.4%±4.0% vs. 28.9%±9.5%, P=0.01). The bone-to-implant contact ratio was 50.8%±1.4% in the OVX-ZP group and 16.9%±2.4% in the OVX-Z group (P=0.012). The average bone volume ratio as shown on micro-CT was 31.3%±19.8% in the OVX-ZP group and 19.4%±9.3% in the OVX-Z group (P=0.045). The OVX-ZP and OVX-Z groups displayed similar trabecular thickness (0.06±0.004 mm vs. 0.06±0.002 mm) (P>0.05) and trabecular separation (0.21±0.02 mm vs. 0.29±0.13 mm) (P>0.05). However, the number of trabeculae in the OVX-ZP group was significantly higher than that in the OVX-Z group (4.3±1.33/㎣ vs. 2.2±0.19/㎣) (P=0.024). Conclusions: The present findings indicate that intermittently-administered PTH can promote peri-implant bone formation and suggest that PTH administration may aid in effective treatment for medication-related osteonecrosis of the jaw after dental implantation.

A short-term clinical study of marginal bone level change around microthreaded and platform-switched implants

  • Yun, Hee-Jung;Park, Jung-Chul;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.211-217
    • /
    • 2011
  • Purpose: The marginal bone levels around implants following restoration are used as a reference for evaluating implant success and survival. Two design concepts that can reduce crestal bone resorption are the microthread and platform-switching concepts. The aims of this study were to analyze the placement of microthreaded and platform-switched implants and their short-term survival rate, as well as the level of bone around the implants. Methods: The subjects of this study were 27 patients (79 implants) undergoing treatment with microthreaded and platform-switched implants between October 2008 and July 2009 in the Dental Hospital of Yonsei University Department of Periodon-tology. The patients received follow-up care more than 6 months after the final setting of the prosthesis, at which time periapical radiographs were taken. The marginal bone level was measured from the reference point to the lowest observed point of contact between the marginal bone and the fixture. Comparisons were made between radiographs taken at the time of fixture installation and those taken at the follow-up visit. Results: During the study period (average of 11.8 months after fixture installation and 7.4 months after the prosthesis delivery), the short-term survival rate of microthreaded and platform-switched implants was 100% and the marginal bone loss around implants was $0.16{\pm}0.08$ mm, the latter of which is lower than the previously reported values. Conclusions: This short-term clinical study has demonstrated the successful survival rates of a microthread and platform-switched implant system, and that this system is associated with reduced marginal bone loss.

AN EXPERIMENTAL STUDY ON THE OSSEOINTEGRATION OF THE TI-6AL-4V BEAD COATING IMPLANTS (Ti-6Al-4V 비드코팅 임프란트 시제품의 골유착에 대한 실험적 연구)

  • Woo, Jin-Oh;Park, Bong-Wook;Byun, June-Ho;Kim, Seung-Eon;Kim, Gyoo-Cheon;Park, Bong-Soo;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • The geometric design of an implant surface may play an important role in affecting early osseointegration. It is well known that the porous surfaced implant had much benefits for the osseointegration and the early stability of implant. However, the porous surfaced implant had weakness from the transgingival contamitants, and it resulted in alveolar bone loss. The other problem identified with porous surface implant is the loss of physical properties resulting from the bead sintering process. In this study, we developed the new bead coating implant to overcome the disadvantages of porous surfaced implant. Ti-6Al-4V beads were supplied from STARMET (USA). The beads were prepared by a plasma rotating electrode process (PREP) and had a nearly spherical shape with a diameter of 75-150 ${\mu}m$. Two types of titanium implants were supplied by KJ Meditech (Korea). One is an external hexa system (External type) and the other is an internal system with threads (Internal type). The implants were pasted with beads using polyvinylalcohol solution as a binder, and then sintered at 1250 $^{\circ}C$ for 2 hours in vacuum of $10^{-5}$ torr. The resulting porous structure was 400-500 ${\mu}m$ thick and consisted of three to four bead layers bonded to each other and the implant. The pore size was in the range of 50-150 ${\mu}m$ and the porosity was 30-40 % in volume. The aim of this study was to evaluate the osseointegration of the newly developed dental implant. The experimental implants (n=16) were inserted in the unilateral femur of 4 mongrel dogs. All animals were killed at 8 weeks after implantation, and samples were harvested for hitological examination. All bead coated porous implants were successfully osseointegrated with peripheral bone. The average bone-implant contact ratios were 84.6 % (External type) and 81.5 % (Internal type). In the modified Goldner's trichrome staining, new generated mature bones were observed at the implant interface at 8 weeks after implantation. Although, further studies are required, we could conclude that the newly developed vacuum sintered Ti-6Al-4V bead coating implant was strong enough to resist the implant insertion force, and it was easily osseointegrated with peripheral bone.

Effects of cementless fixation of implant prosthesis: A finite element study

  • Lee, Hyeonjong;Park, Soyeon;Kwon, Kung-Rock;Noh, Gunwoo
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.341-349
    • /
    • 2019
  • PURPOSE. A novel retentive type of implant prosthesis that does not require the use of cement or screw holes has been introduced; however, there are few reports examining the biomechanical aspects of this novel implant. This study aimed to evaluate the biomechanical features of cementless fixation (CLF) implant prostheses. MATERIALS AND METHODS. The test groups of three variations of CLF implant prostheses and a control group of conventional cement-retained (CR) prosthesis were designed three-dimensionally for finite element analysis. The test groups were divided according to the abutment shape and the relining strategy on the inner surface of the implant crown as follows; resin-air hole-full (RAF), resin-air hole (RA), and resin-no air hole (RNA). The von Mises stress and principal stress were used to evaluate the stress values and distributions of the implant components. Contact open values were calculated to analyze the gap formation of the contact surfaces at the abutment-resin and abutment-implant interfaces. The micro-strain values were evaluated for the surrounding bone. RESULTS. Values reflecting the maximum stress on the abutment were as follows (in MPa): RAF, 25.6; RA, 23.4; RNA, 20.0; and CR, 15.8. The value of gap formation was measured from 0.88 to 1.19 ㎛ at the abutment-resin interface and 24.4 to 24.7 ㎛ at the abutment-implant interface. The strain distribution was similar in all cases. CONCLUSION. CLF had no disadvantages in terms of the biomechanical features compared with conventional CR implant prosthesis and could be successfully applied for implant prosthesis.