Journal of Dental Rehabilitation and Applied Science
/
v.19
no.4
/
pp.257-268
/
2003
The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.
Park, Seung-Hyun;Kim, Seong-Hun;Ryu, Jun-Ha;Kang, Yoon-Goo;Chung, Kyu-Rhim;Kook, Yoon-Ah
The korean journal of orthodontics
/
v.38
no.6
/
pp.416-426
/
2008
The purpose of this study was to evaluate the mobility and ratio of the bone-implant contact (BIC) of a sandblasted, large grit and acid-etched (SLA) orthodontic micro-implant. Methods: Ninety-six micro-implants (48 SLA and 48 machined) were implanted in the upper and lower buccal alveolar bone, and palatal bone of four beagle dogs. Two weeks after surgery, orthodontic force (150-200 g) was applied. Two beagles were sacrificed at 4-weeks and the other two at 12-weeks. Histomorphometric comparisons were made between the SLA experimental group and the machined micro-implant as a control group to determine the ratio of contact between the bone and implant. Micro-implant mobility was also evaluated using $Periotest^{(R)}$. Results: Periotest values showed no statistically significant difference in the upper alveolar and palatal bone between groups except for the lower buccal area. BIC in the upper buccal area showed no significant difference between groups both at 4-weeks and 12-weeks. However, both the groups showed a significant difference in BIC ratio in the rest of the experimental areas between 4 weeks and 12 weeks. The experimental group showed active bone remodeling around the bone-implant interface compared to the control group. Conclusions: There were significant differences in the BIC and the Periotest values between the surface-treated and machined micro-implants according to bone quality in the early stage.
Objective: The objective of this study was to evaluate the osseointegration of narrow-diameter implant with trapezoid-shape and to evaluate the effect of coronal microthreads on trapezoid-shape narrow-diameter implant. Materials and Methods: The experimental narrow-diameter implants were classified into two groups according to absence or presence of coronal microthreads: trapezoid-shape narrow diameter implant (TN group) and trapezoid-shape narrow-diameter implant with microthreads (TNM group). They were installed alternately in bilateral mandible in three dogs. After 8 weeks, the animals were sacrificed. Resonance frequency analysis, removal torque test, and histometric analysis were performed. Results: Statistically higher implant stability quotient (ISQ) values were observed in TNM group than in TN group at the time of implant installation. However, significant ISQ values difference was not observed between groups at 8 weeks. Both groups showed significantly increased ISQ values at 8 weeks, compared to the time of implant installation. There was no significant difference between groups in removal torque test. Bone-implant contact ratio also showed no significant difference between groups in total and coronal part. Conclusion: Within the limitation of this study, it could be concluded that the trapezoid-shape design on narrow-diameter implant showed successful ossointegration, and the microthreads on coronal part did not result in significant bone-implant contact and biomechanical stability at 8 weeks.
Objective: This study was conducted to perform histomorphometric evaluations of the bone surrounding orthodontic miniscrews according to their proximity to the adjacent tooth roots in the posterior mandible of beagle dogs. Methods: Four male beagle dogs were used for this study. Six orthodontic miniscrews were placed in the interradicular spaces in the posterior mandible of each dog (n = 24). The implanted miniscrews were classified into no loading, immediate loading, and delayed loading groups according to the loading time. At 6 weeks after screw placement, the animals were sacrificed, and tissue blocks including the miniscrews were harvested for histological examinations. After analysis of the histological sections, the miniscrews were categorized into three additional groups according to the root proximity: high root proximity, low root proximity, and safe distance groups. Differences in the bone-implant contact (BIC, %) among the root proximity groups and loading time groups were determined using statistical analyses. Results: No BIC was observed within the bundle bone invaded by the miniscrew threads. Narrowing of the periodontal ligament space was observed in cases where the miniscrew threads touched the bundle bone. BIC (%) was significantly lower in the high root proximity group than in the low root proximity and safe distance groups. However, BIC (%) showed no significant differences among the loading time groups. Conclusions: Regardless of the loading time, the stability of an orthodontic miniscrew is decreased if it is in contact with the bundle bone as well as the adjacent tooth root.
Dental implantation is a method restoring missing teeth, especially in the case of severely resorbed edentulous patient. But the direct contact between bone and implant surface, induces stress concentration to the bone and eventually becomes a cause. The purpose of this study was to compare the stress distribution patterns between following two cylindrical implant models. One group has implant apex located in the inferior cortical bone and the other in the cancellous bone. Anterior edentulous mandible was modeled with two dimensional 953,878 nodes, 995,918 elements and compared the deflection and stress distribution under the 70 N,4 load cases for 26 models having variant mandibular height and length. The result were as follows; 1. The stress concentration was more affected by the height of the mandible than implant length. 2. Bicortication mitigates the stress of upper cortical and cancellous bone area at the same height of the mandible 3. Perforation of the inferior mandibular cortex significant stress concentration. 4. Stud type porstheses induced less stress concentration to the cortical and cancellous bone than bar type prostheses. 5. Stress of implant apex for stud type was larger than that of bar type.
In recent years immediate implantation has been tried by a few clinicians. This study placed IMZ implants in the rabbit femur with and without bony defects around the implant for simulating fresh extraction site. And one group with bony defects used porous hydroxyapatite ganules(HA) to fill if and the other group left the bony defects around the implant. The purpose of this study was to compare the shear bond strength and the bony contact and formation around the implant. Fifteen rabbits were divided into three groups and placed 10 IMZ implants to each group. Implant sites were surgically prepared with IMZ drills kit and implants were placed(Control), artificial bony defect was created with Apaceram drills kit around the implant sites and implants were placed(Experimental I), bony defect was filled with porous hydroxyapatite granules(Experimental II). Thereafter, rabbits were sacrificed at 8th week and specimens were prepared and pushout tested for shear bond strength of bone-implant interface immediately. Undecalcified and decalcified specimens were prepared with Vilanueva and hematoxylin-eosin stain for light microscopic finding. The results of this study were as follows. 1. In the control group, mean shear strength of bone-implant interface was $2.614{\pm}0.680$ MPa, experimental I was $0.664{\pm}0.322$ MPa, and experimental II was $2.281{\pm}0.606$ MPa. There was significant difference between control and experimental I, between experimental I and experimental II, but did not show significant difference between control and experimental II statistically. 2. In the bony formation surrounding IMZ implant of the three groups, that of cortical bone is more advanced than cancellous bone area. 3. In the histological findings of undecalcified specimens, control and experimental II showed more than 50% of bony or osteoid formation at the bony-implant interface. 4. In the histological findings of undecalcified specimens, experimental I showed less than 50% of bony or osteoid formation at the interface, and observed partial bony defect in the coronal zone. 5. In the experimental II group, were observed direct bony contact to hydroxyapatite granules, and infiltration of a few giant cells. 6. No inflammatory responses were seen around the titanium implants and the hydroxyapatite granules.
Purpose: The aim of this study is to compare the healing response of various Hydroxyapatite(HA) coated dental implants by Ion-Beam Assisted Deposition(IBAD) placed in the surgically created circumferential gap in dogs. Materials and methods: In four mongrel dogs, all mandibular premolars and the first molar were extracted. After an 8 weeks healing period, six submerged type implants were placed and the circumferential cylindrical 2mm coronal defects around the implants were made surgically with customized step drills. Groups were divided into six groups : anodized surface, anodized surface with 150nm HA and heat treatment, anodized surface with 300nm HA and heat treatment, anodized surface with 150nm HA and no heat treatment, and anodized surface with 150nm HA, heat treatment and bone graft, anodized surface with bone graft. The dogs were sacrificed following 12 weeks healing period. Specimens were analyzed histologically and histomorphometrically. Results: During the healing period, healing was uneventful and implants were well maintained. Anodized surface with HA coating and $430^{\circ}C$ heat treatment showed an improved regenerative characteristics. Most of the gaps were filled with newly regenerated bone. The implant surface was covered with bone layer as base for intensive bone formation and remodeling. In case that graft the alloplastic material to the gaps, most of the coronal gaps were filled with newly formed bone and remaining graft particles. The bone-implant contact and bone density parameters showed similar results with the histological findings. The bone graft group presented the best bone-implant contact value which had statistical significance. Conclusion: Within the scope of this study, nano-scale HA coated dental implants appeared to have significant effect on the development of new bone formation. And additional bone graft is an effective method in overcoming the gaps around the implants.
The orthodontic osseointegrated titanium implant, a kind of intraoral skeletal anchorage can be an alternative to tooth-borne anchorage, in case that the conventional tooth-borne anchorage is not available or the anchorage is critical. This study was conducted to elucidate the effect of early loading on the osseointegration of the orthodontic titanium implant and the healing process of the impaired bone at the site of implant after removing it. In two adult beagle dogs24 osseointegrated titanium implants were inserted into the alveolar bone, with 12 implants placed in each dog. In dog1, 6 out of 12 implants were loaded with 200-300gm of force immediately after placing, and the remaining 6 implants were not loaded for 4weeks. In dog2, all 12 implants had healing period of 4weeks, and then were loaded with 200-300gm of force for another 4weeks. Following an observation period of 4 and 8 weeks, the animals were sacrificed. Then the implants and the surrounding bone of dog1 and dog2 were removed, respectively. Undecalcified sections along the long axis of implant were made and the degree of osseointegration was examined under the light microscope. The results were as follows. 1. In the histologic features of tissues around implants anchored in dog1, there was no difference between immediately loaded implants and unloaded implants. Immature woven bone was ingrowing into the thread spaces from the original compacta and in direct contact with the implant surface in part. 2. The premature loading just after 4weeks healing period did not halt the progress of the osseointegration between bone and implant surface. The woven bone around the implants was maturing into the lamellar bone which resembled the structure of the original compacta at the end of 8weeks observation period. 3. Most implants with the inflammed surrounding mucosa were lost or mobile. The mobile implants were encapsulated by fibrous connective tissue which separated the implant surface from the bone. 4. The impaired bone at the site of the implant failed to anchor was showing recovery without inflammatory reaction 2weeks after removing, with the immaure woven bone lined by active osteoblasts and osteoid. Based on the results of this study, the integration of this orthodontic implant seemed to be impaired by the inflammation of the tissue surrounding the Implant rather than by early loading on implant, and increased with time lapsed after placing the implant. The use of implant described in this report can be recommended as an orthodontic anchorage unit immediately after insertion under the careful control of orthodontic force applied and plaque.
Dongseob Lee;Jungwon Lee;Ki-Tae Koo;Yang-Jo Seol;Yong-Moo Lee
Journal of Periodontal and Implant Science
/
v.53
no.2
/
pp.157-169
/
2023
Purpose: The aim of this study was to evaluate the impact of polydeoxyribonucleotide (PDRN) on histologic outcomes when implant placement and lateral sinus floor elevation are performed simultaneously. Methods: Three bimaxillary premolars (P2, P3, and P4) were extracted from 4 beagle dogs 2 months before lateral sinus floor elevation. After lateral elevation of the sinus membrane, each sinus was allocated to either the test or control group. Sinuses underwent either 1) collagenated synthetic bone graft with PDRN following lateral sinus floor elevation (test group) or 2) collagenated synthetic bone graft without PDRN after lateral sinus floor elevation (control group). Eight weeks after the surgical procedure, all animals were euthanised for a histologic and histomorphometric assessment. Augmented height (AH), protruding height (PH), and bone-to-implant contact in pristine (BICp) and augmented (BICa) bone were measured. The composition of the augmented area, which was divided into 3 areas of interest located in coronal, middle and apical areas (AOI_C, AOI_M, and AOI_A), was calculated with 3 parameters: the area percentage of new bone (pNB), residual bone graft particle (pRBP), and fibrovascular connective tissue (pFVT). Results: AH, PH, BICp, BICa total, BICa coronal, and BICa middle values were not significantly different between sinuses in the control and test groups (all P>0.05). The BICa apical of sinuses in the test group (76.7%±9.3%) showed statistically higher values than those of sinuses in the control group (55.6%±22.1%) (P=0.038). pNB, pRBP, and pFVT showed statistically significant differences between the 2 groups in AOI_A (P=0.038, P=0.028, and P=0.007, respectively). pNB, pRBP, and pFVT in AOI_C and AOI_M were not significantly different between samples in the control and test groups (all P>0.05). Conclusions: The histologic findings revealed that lateral sinus floor elevation with PDRN might improve early new bone formation and enable higher bone-to-implant contact.
The aim of this study is to investigate the effect of anodizing surface to osseointegration of implant by using of resonance frequency analysis (RFA), quantitative and qualitative assessment of an anodically modified implant type with regard to osseous healing qualities. A total of 96 screw-shaped implants were prepared for this study. 72 implants were prepared by electrochemical oxidation with different ways. 24 (group 1 SP) were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid. 24 (group 2GC) were prepared at galvanostatic mode in calcium glycerophosphate and calcium acetate and 24 (group 3 CMP (Calcium Metaphosphate) Coating were prepared at galvanostatic mode in 0.25M sulfuric acid and phosphoric acid followed by CMP coating. Rest of 24 (control group were as a control group of RBM surface. Bone tissue responses were evaluated by resonance frequency analysis (RFA) that were undertaken at 2, 4 and 6 weeks after implant placement in the mandible of mini-pig. Group 1 SP (anodized with sulfuric acid and phosphoric acid implants) demonstrated slightly stronger bone responses than control Group RBM. Group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) demonstrated no difference which were compared with control group. Group 3 GMP (anodized and CMP coated implants) demonstrated slightly stronger and faster bone responses than any other implants. But, all observation result of RF A showed no significant differences between experimental groups with various surface type. Histomorphometric evaluation demonstrated significantly higher bone-to-implant contact for group 2 GC. Significantly more bone formation was found inside threaded area for group 2 GC. It was concluded that group 2 GC (anodized surface with calcium glycerophosphate and calcium acetate implants) showed more effects on the bone tissue responses than RBM surface in initial period of implantation. In addition, CMP showed a tendency to promote bone tissue responses.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.