• Title/Summary/Keyword: Bone screw

Search Result 437, Processing Time 0.024 seconds

Biodegradable Screws Containing Bone Morphogenetic Protein-2 in an Osteoporotic Rat Model

  • Jin, Eun-Sun;Kim, Ji Yeon;Lee, Bora;Min, JoongKee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • Objective : The aim of this study was to evaluate the effect for biodegradable screws containing bone morphogenetic protein-2 (BMP-2) in an osteoporotic rat model. Methods : Twenty-four female Wistar rat (250-300 g, 12 weeks of age) were randomized into four groups. Three groups underwent bilateral ovariectomy (OVX). Biodegradable screws with or without BMP-2 were inserted in the proximal tibia in two implantation groups. The extracted proximal metaphysis of the tibiae were scanned by exo-vivo micro-computed tomography. Evaluated parameters included bone mineral density (BMD), trabecular bone volume (BV/TV), trabecular number, trabecular thickness, and trabecular separation (Tb.Sp). The tibia samples were pathologically evaluated by staining with by Hematoxylin and Eosin, and trichrome. Results : Trabecular formation near screw insertion site was evident only in rats receiving BMP-2 screws. BMD and BV/TV significantly differed between controls and the OVX and OVX with screw groups. However, there were no significant differences between control and OVX with screw BMP groups. Tb.Sp significantly differed between control and OVX and OVX with screw groups (p<0.05), and between the OVX and OVX with screw BMP group (p<0.05), with no statistically significant difference between control and OVX with screw BMP groups. Over the 12 weeks after surgery, bone lamellae in direct contact with the screw developed more extensive and thicker trabecular bone around the implant in the OVX with screw BMP group compared to the OVX with screw group. Conclusion : Biodegradable screws containing BMP-2 improve nearby bone conditions and enhance ostoeintegration between the implant and the osteoporotic bone.

Posterior Atalntoaxial Fusion with C1 Lateral Mass Screw and C2 Pedicle Screw Supplemented with Miniplate Fixation for Interlaminar Fusion : A Preliminary Report

  • Yoon, Sang-Mok;Baek, Jin-Wook;Kim, Dae-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.2
    • /
    • pp.120-125
    • /
    • 2012
  • Objective : To investigate the feasibility of C1 lateral mass screw and C2 pedicle screw with polyaxial screw and rod system supplemented with miniplate for interlaminar fusion to treat various atlantoaxial instabilities. Methods : After posterior atlantoaxial fixation with lateral mass screw in the atlas and pedicle screw in the axis, we used 2 miniplates to fixate interlaminar iliac bone graft instead of sublaminar wiring. We performed this procedure in thirteen patients who had atlantoaxial instabilities and retrospectively evaluated the bone fusion rate and complications. Results : By using this method, we have achieved excellent bone fusion comparing with the result of other methods without any complications related to this procedure. Conclusion : C1 lateral mass screw and C2 pedicle screw with polyaxial screw and rod system supplemented with miniplate for interlaminar fusion may be an efficient alternative method to treat various atlantoaxial instabilities.

A finite element stress analysis on the supporting bone and abutment screw by tightening torque of dental implant abutment screw (치과용 임플란트 지대주나사의 조임체결력에 따른 지지골과 지대주나사의 유한요소법 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.99-105
    • /
    • 2020
  • Purpose: A study analysed the stress distribution of abutment screw and supporting bone of fixture by the tightening torque force of the abutment screw within clinical treatment situation for the stability of the dental implant prosthesis. Methods: The finite element analysis was targeted to the mandibular molar crown model, and the implant was internal type 4.0 mm diameter, 10.0 mm length fixture and abutment screw and supporting bone. The occlusal surface was modeled in 4 cusps and loaded 100 N to the buccal cusps. The connection between the abutment and the fixture was achieved by combining three abutment tightening torque forces of 20, 25, and 30 Ncm. Results: The results showed that the maximum stress value of the supporting bone was found in the buccal cortical bone region of the fixture in all models. The von Mises stress value of each model showed 184.5 MPa at the 20 Ncm model, 195.3 MPa in the 25 Ncm model, and 216.5 MPa in the 30 Ncm model. The contact stress between the abutment and the abutment screw showed the stress value in the 20 Ncm model was 201.2 MPa, and the 245.5 MPa in the 25 Ncm model and 314.0 MPa in the 30 Ncm model. Conclusion: The increase of tightening force within the clinical range of the abutment screw of the implant dental prosthesis was found to have no problem with the stability of the supporting bone and the abutment screw.

The effect of implant shape and bone preparation on primary stability

  • Moon, Sang-Hyun;Um, Heung-Sik;Lee, Jae-Kwan;Chang, Beom-Seok;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.5
    • /
    • pp.239-243
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate the effects of implant shape and bone preparation on the primary stability of the implants using resonance frequency analysis. Methods: Sixty bovine rib blocks were used for soft and hard bone models. Each rib block received two types of dental implant fixtures; a straight-screw type and tapered-screw type. Final drilling was done at three different depths for each implant type; 1 mm under-preparation, standard preparation, and 1 mm over-preparation. Immediately after fixture insertion, the implant stability quotient (ISQ) was measured for each implant. Results: Regardless of the bone type, the ISQ values of the straight-screw type and tapered-screw type implants were not significantly different (P>0.05). Depth of bone preparation had no significant effect on the ISQ value of straight-screw type implants (P>0.05). For the tapered-screw type implants, under-preparation significantly increased the ISQ value (P<0.05), whereas overpreparation significantly decreased the ISQ value (P<0.05). Conclusions: Within the limitations of this study, it is concluded that bone density seemed to have a prevailing effect over implant shape on primary stability. The primary stability of the tapered-screw type implants might be enhanced by delicate surgical techniques.

THREE-DIMENSIONAL FINI6E ELEMENT ANALYSIS OF THE ENDOSSEOUS IMPLANT DESIGNS (삼차원 유한요소 해석에 의한 골내 임프란트의 구조에 관한 연구)

  • Hyun, Young-Keun;Kwon, Jong-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.181-210
    • /
    • 1997
  • The stress distribution generated in the surrounding bone was calculated and compared for various geometry of the dental implants by means of the finite element methods. The models were designed to represent the screw type endosseous implants(varing the size, shape, direction of the screw thread and the angle of the body) with supporting bone and the cylinder type endosseous implants(varing the lower portion-Round type, tapered type) with supporting bone. Static mean bite forces were applied 100N vertically and 25N horizontally on the center of the implant and three dimensional finite analysis was undertaken using software ANSYS 5.1 Version. The result demonstrated that different implant shape leads to significant variations in stress distribution in the bone. In the case of variation of the screw size, direction and shape the implant model with normally directional and triangular screw implied lower stress than with upper directional or lower directional and quadrangular screw but among models a different screw size, within a variation of 0.2mm there was no meaningful difference in maximum stress. In the case of variation of angle of body the straight implied lower stress than the tapered. As a result of analysis of cylinder type, the implants with larger radius of curvature of the round form and larger diameter of the tapered form implied lower stress.

  • PDF

Posterior Screw Fixation in Previously Augmented Vertebrae with Bone Cement : Is It Inapplicable?

  • Park, Jae Hoo;Ju, Chang Il;Kim, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.1
    • /
    • pp.114-119
    • /
    • 2018
  • Objective : The purpose of this study was to determine the feasibility of screw fixation in previously augmented vertebrae with bone cement. We also investigated the influence of cement distribution pattern on the surgical technique. Methods : Fourteen patients who required screw fixation at the level of the previous percutaneous vertebroplasty or balloon kyphoplasty were enrolled in this study. The indications for screw fixation in the previously augmented vertebrae with bone cement included delayed complications, such as cement dislodgement, cement leakage with neurologic deficits, and various degenerative spinal diseases, such as spondylolisthesis or foraminal stenosis. Clinical outcomes, including pain scale scores, cement distribution pattern, and procedure-related complications were assessed. Results : Three patients underwent posterior screw fixation in previously cemented vertebrae due to cement dislodgement or progressive kyphosis. Three patients required posterior screw fixation for cement leakage or displacement of fracture fragments with neurologic deficits. Eight patients underwent posterior screw fixation due to various degenerative spinal diseases. It was possible to insert screws in the previously augmented vertebrae regardless of the cement distribution pattern; however, screw insertion was more difficult and changed directions in the patients with cemented vertebrae exhibiting a solid pattern rather than a trabecular pattern. All patients showed significant improvements in pain compared with the preoperative levels, and no patient experienced neurologic deterioration as seen at the final follow-up. Conclusion : For patients with vertebrae previously augmented with bone cement, posterior screw fixation is not a contraindication, but is a feasible option.

Assessment of Xenogenic Bone Plate and Screw using Finite Element Analysis

  • Heo, Su-young;Lee, Dong-bin;Kim, Nam-soo
    • Journal of Veterinary Clinics
    • /
    • v.35 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior of xenogenic bone plate system (equine bone) using a three-dimensional finite element ulna fracture model. The model was used to calculate the Von Mises stress (VMS) and stress distribution in fracture healing periods with metallic bone plate and xenogenic bone plate systems, which are installed while the canine patient is standing. Bone healing rate (BHR) (0%) and maximum VMS of the xenogenic plate was similar to the yield strength of equine bone (125 MPa). VMS at the ulna and fracture zones were higher with the xenogenic bone plate than with the metallic bone plate at BHRs of 0% and 1%. Stress distributions in fracture zone were higher with the xenogenic bone plate than the metallic bone plate. This study results indicate that the xenogenic bone plate may be considered more beneficial for callus formation and bone healing than the metallic bon plate. Xeonogenic bone plate and screw applied in clinical treatment of canines may provide reduced stress shielding of fractures during healing.

The influence of screw type and osseointegration ratio on stress distribution in two different endosseous implants

  • Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.348-357
    • /
    • 2000
  • The purpose of this study is to examine the effect of partial osseointegration situation on bone loading patterns around two different free-standing screw shaped implants (Nobel Biocare, Gothenburg, Sweden and Degussa-Huls, Hanau, German). Two dimensional axisymmetric Finite element models of two implants(10mm length and 4mm diameter) were created according to different bone quantity, quality and osseointegration ratio in maxilla and mandible bone. At the same time uni-cortical and hi-cortical fixation were analyzed. Generally, full bond case showed less stress than partial bond case in overall area and mandibular model showed less amount of stress than that of maxilla model. Maximum stress of the Branemark implant is higher than that of ANKYLOS regardless of bonding ratio at crestal and apex region. However, more stress concentration was noted in ANKYLOS implant at screw body area especially in mandible. The effect of bicortical fixation on crestal bone stress reduction is dramatical in mandible however, there was no significant effect in maxillary case. The effect of partial bond on stress distribution was more significant at screw body and apex region than in crestal region. Partial bond cases demonstrated greater stress accumulation in trabecular bone than cortical bone. It is concluded that the more accurate model of implant and bone which affects stress and strain distribution is needed to mimic in vivo behavior of implants.

  • PDF

Short Segment Fixation for Thoracolumbar Burst Fracture Accompanying Osteopenia : A Comparative Study

  • Kim, Hyeun Sung;Kim, Seok Won;Ju, Chang Il;Lee, Sung Myung;Shin, Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.1
    • /
    • pp.26-30
    • /
    • 2013
  • Objective : The purpose of this study was to compare the results of three types of short segment screw fixation for thoracolumbar burst fracture accompanying osteopenia. Methods : The records of 70 patients who underwent short segment screw fixation for a thoracolumbar burst fracture accompanying osteopenia (-2.5< mean T score by bone mineral densitometry <-1.0) from January 2005 to January 2008 were reviewed. Patients were divided into three groups based on whether or not bone fusion and bone cement augmentation procedure 1) Group I (n=26) : short segment fixation with posterolateral bone fusion; 2) Group II (n=23) : bone cement augmented short segment fixation with posterolateral bone fusion; 3) Group III (n=21) : bone cement augmented, short segment percutaneous screw fixation without bone fusion. Clinical outcomes were assessed using a visual analogue scale and modified MacNab's criteria. Radiological findings, including kyphotic angle and vertebral height, and procedure-related complications, such as screw loosening or pull-out, were analyzed. Results : No significant difference in radiographic or clinical outcomes was noted between patients managed using the three different techniques at last follow up. However, Group I showed more correction loss of kyphotic deformities and vertebral height loss at final follow-up, and Group I had higher screw loosening and implant failure rates than Group II or III. Conclusion : Bone cement augmented procedure can be an efficient and safe surgical techniques in terms of achieving better outcomes with minimal complications for thoracolumbar burst fracture accompanying osteopenia.

Analysis of the Bone-remodeling Process Considering Stimuli Delivery Cell Model (자극전달세포 모델을 고려한 골 재형성 해석)

  • Moon Hee-Wook;Kim Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.180-186
    • /
    • 2006
  • To investigate the bone remodeling phenomenon around implant device, 3-D mathematical simulation model was developed. Strain energy density from the finite element method was chosen for the indicator for remodeling process. Recursive calculations continued until converged results between FEM and mathematical model. For a osteo-integration example, bone-remodeling process in a implanted tibia of beagle was adapted. Calculated results indicated that the bone densities around screw pitch were increased which indicates firm fixations between the bone and implant. Screw design parameters have an influence on initial stability of the implant rather than remodeling process.