• Title/Summary/Keyword: Bone remodeling

Search Result 340, Processing Time 0.027 seconds

Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length (다양한 길이의 two-component 미니 임플란트의 응력분산에 대한 3차원적 유한요소분석)

  • Choi, Bohm;Lee, Dong-Ok;Mo, Sung-Seo;Kim, Seong-Hun;Park, Ki-Ho;Chung, Kyu-Rhim;Nelson, Gerald;Han, Seong-Ho
    • The korean journal of orthodontics
    • /
    • v.41 no.6
    • /
    • pp.423-430
    • /
    • 2011
  • Objective: To evaluate the extent and aspect of stress to the cortical bone after application of a lateral force to a two-component orthodontic mini-implant (OMI, mini-implant) by using three-dimensional finite element analysis (FEA). Methods: The 3D-finite element models consisted of the maxilla, maxillary first molars, second premolars, and OMIs. The screw part of the OMI had a diameter of 1.8 mm and length of 8.5 mm and was placed between the roots of the upper second premolar and the first molar. The cortical bone thickness was set to 1 mm. The head part of the OMI was available in 3 sizes: 1 mm, 2 mm, and 3 mm. After a 2 N lateral force was applied to the center of the head part, the stress distribution and magnitude were analyzed using FEA. Results: When the head part of the OMI was friction fitted (tapped into place) into the inserted screw part, the stress was uniformly distributed over the surface where the head part was inserted. The extent of the minimum principal stress suggested that the length of the head part was proportionate with the amount of stress to the cortical bone; the stress varied between 10.84 and 15.33 MPa. Conclusions: These results suggest that the stress level at the cortical bone around the OMI does not have a detrimental influence on physiologic bone remodeling.

Effects of propofol-induced autophagy against oxidative stress in human osteoblasts

  • Kim, Eun-Jung;Choi, In-Seok;Yoon, Ji-Young;Park, Bong-Soo;Yoon, Ji-Uk;Kim, Cheul-Hong
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • Background: Oxidative stress occurs during the aging process and other conditions such as bone fracture, bone diseases, and osteoporosis, but the role of oxidative stress in bone remodeling is unknown. Propofol exerts antioxidant effects, but the mechanisms of propofol preconditioning on oxidative stress have not been fully explained. Therefore, the aim of this study was to evaluate the protective effects of propofol against $H_2O_2$-induced oxidative stress on a human fetal osteoblast (hFOB) cell line via activation of autophagy. Methods: Cells were randomly divided into the following groups: control cells were incubated in normoxia (5% $CO_2$, 21% $O_2$, and 74% $N_2$) without propofol. Hydrogen peroxide ($H_2O_2$) group cells were exposed to $H_2O_2\;(200{\mu}M)$ for 2 h, propofol preconditioning (PPC)/$H_2O_2$ group cells were pretreated with propofol then exposed to $H_2O_2$, 3-methyladenine (3-MA)/PPC/$H_2O_2$ cells were pretreated with 3-MA (1 mM) and propofol, then were exposed to $H_2O_2$. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone related proteins were determined by western blot. Results: Cell viability and bone nodular mineralization were decreased significantly by $H_2O_2$, and this effect was rescued by propofol preconditioning. Propofol preconditioning effectively decreased $H_2O_2$-induced hFOB cell apoptosis. However, pretreatment with 3-MA inhibited the protective effect of propofol. In western blot analysis, propofol preconditioning increased protein levels of collagen type I, BMP-2, osterix, and TGF-${\beta}1$. Conclusions: This study suggests that propofol preconditioning has a protective effect on $H_2O_2$-induced hFOB cell death, which is mediated by autophagy activation.

Acidification of drinking water improved tibia mass of broilers through the alterations of intestinal barrier and microbiota

  • Zhang, Huaiyong;Guo, Yujun;Wang, Ziyang;Wang, Yongshuai;Chen, Bo;Du, Pengfei;Zhang, Xiangli;Huang, Yanqun;Li, Peng;Michiels, Joris;Chen, Wen
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.902-915
    • /
    • 2022
  • Objective: Diet acidification supplementation is known to influence intestinal morphology, gut microbiota, and on phosphorus (P) utilization of broilers. Alterations in intestinal barrier and microbiota have been associated with systemic inflammation and thus regulating bone turnover. Hence the effect of acidifier addition to drinking water on tibia mass and the linkages between intestinal integrity and bone were studied. Methods: One-d-old male broilers were randomly assigned to normal water (control) or continuous supply of acidified water (2% the blend of 2-hydroxy-4-methylthiobutyric acid, lactic, and phosphoric acid) group with 5 replicates of 10 chicks per replicate for 42 d. Results: Acidification of drinking water improved the ash percentage and calcium content of tibia at 42 d. Broilers receiving acidified water had increased serum P concentration compared to control birds. The acidified group showed improved intestinal barrier, evidenced by increased wall thickness, villus height, the villus height to crypt depth ratio, and upregulated mucin-2 expression in ileum. Broilers receiving drinking water containing mixed organic acids had a higher proportion of Firmicutes and the ratio of Firmicutes and Bacteroidetes, as well as a lower population of Proteobacteria. Meanwhile, the addition of acidifier to drinking water resulted in declined ileal and serum proinflammatory factors level and increased immunoglobulin concentrations in serum. Concerning bone remodeling, acidifier addition was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen and tartrate-resistant acid phosphatase reflecting bone resorption, whereas it did not apparently change serum alkaline phosphatase activity that is a bone formation marker. Conclusion: Acidified drinking water increased tibia mineral deposition of broilers, which was probably linked with higher P utilization and decreased bone resorption through improved intestinal integrity and gut microbiota and through decreased systemic inflammation.

MnBillnry protraction treatment of skeletal Class III children using miniplnte anchorage (Miniplate anchorage를 이용한 골격성 III급 부정교합 아동의 상악 전방견인 치료)

  • Cha, Bong-Kuen;Lee, Nam-Ki;Choi, Dong-Soon
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.73-84
    • /
    • 2007
  • The maxillary protraction headgear has been widely used in the treatment of skeletal Class III children with maxillary deficiency. A variety of treatment objectives which allow dentoalveolar movements may be established, but when only maxillary protraction without dentoalveolar movement is needed, one of the limitations in maxillary protraction with conventional tooth-borne anchorage is the loss of dental anchorage. This is because a bone remodeling occurs not only at circummaxillary sutures but also within the periodontal tissues. During protraction treatment in the mixed dentition phase, in older children or for the patient with multiple congenitally missing teeth, it is not uncommon to observe undesirable mesial movement of maxillary teeth. Such a side effect can be eliminated or minimized using absolute anchorage such as skeletal anchorage. The purpose of this case report is to introduce a new technique of the maxillary protraction headgear treatment using surgical miniplates.

Intracorporeal reduction of condylar fracture using both pedicled condylar and seperated ramal fragments after vertical ramal osteotomy

  • Kim, Il-Kyu;Jang, Jun-Min;Cho, Hyun-Young;Seo, Ji-Hoon;Lee, Dong-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.5
    • /
    • pp.343-350
    • /
    • 2017
  • The aim of this study is to introduce a surgical technique that can maintain blood supply to prevent condylar resorption in the extracorporeal reduction of condylar fracture. Neither the medial pterygoid muscle on the ramal bone nor the lateral pterygoid muscle on the condylar fragment was detached after vertical ramal osteotomy. Thus, reduction was performed in the intracorporeal state. Therefore, blood supply was expected to be maintained to the fragments of both the condylar and ramal bones. On postoperative radiographs, the anatomical outline of the fractured condyle was well restored, and the occlusion was stable. In the unilateral case, there were no signs of mandibular condylar resorption until postoperative 3 weeks. In the 2 bilateral cases, condylar displacements with plate fractures and screw loosening were observed at postoperative 1 month or 5 months, but radiodensity at the displaced fracture site increased during the follow-up period. Finally, complete remodeling of the condylar fragments with restored anatomic appearance was observed on 8-month or 2-year follow-up radiographs. All cases exhibited good healing aspects with no signs or symptoms of mandibular condylar dysfunction during the postoperative remodeling period after intracorporeal reduction of condylar fracture.

A Case of Surgical Correction of Undercorrected Unicoronal Synostosis (부족교정된 일측성 관상봉합 조기유합증 환자의 수술 교정예)

  • Shim, Hyung Sup;Paik, Hye Won;Byeon, Jun Hee
    • Archives of Craniofacial Surgery
    • /
    • v.9 no.2
    • /
    • pp.85-89
    • /
    • 2008
  • Purpose: Unicoronal synostosis is the craniofacial anomaly caused by premature fusion of unilateral coronal suture. Ipsilateral flattening of the frontal and parietal bones, temporal retrusion with elevation and recession of the supraorbital rim are main clinical features. Compensatory contralateral frontal bossing and deviation of the nasal root and/or chin can also occur. There is a controversy about techniques for surgical correction, however, bilateral approach technique is more effective for correction of deformity. Methods: A 4-year-old patient with unicoronal synostosis had undergone unilateral suturectomy at 28-month-old but fronto-facial deformity had remained and aggravated as she grew older. She had both fronto-facial and endocranial asymmetry. We performed coronal cranial approach and fully exposed affected cranium including supraorbital rim. Anterior 2/3 calvarial reconstruction with bilateral frontal bone osteotomy and fronto-orbital bandeau advancement was performed. Results: Fronto-facial symmetry including fronto-orbital contour, nasal devation was improved. Endocranial twisting was also improved from $158^{\circ}$ to $162^{\circ}$ in CSO(crista gallisella turcica-opisthion) degree. There was no postoperative complications and no need for revision, and facial asymmetry improved at the period of 2 years of follow-up. Conclusion: Bilateral approach with fronto-orbital bandeau remodeling in surgery of unicoronal synostosis looked superior to unilateral approach in achieving better symmetry and preventing recurrence of asymmetry. Remodeling surgery should be tried in patients even at an older age to correct fronto-facial asymmetry.

ARATIVE STUDY OF MAXILLARY SUPERIMPOSITION METHODS ON A LATERAL R NTGENOGRAPHIC CEPHALOMETRY (측모두부방사선사진을 이용한 상악 중첩 방법의 비교연구)

  • Jean, Young-Yim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.197-208
    • /
    • 1998
  • This study was carried out to compare the amount of the maxillary bone remodeling and tooth displacement in each three maxillary superimposition methods, Ricketts, Best-fit, Structural method. Forty cases of the lateral cephalometric radiographs from 27 boys and 13 girls who had been treated to correct anterior cross-bite were selected for the study. The initial radiographs were taken at about 8-year-old and the second radiographs were taken in about 3.3 years later. Followings were the results: 1. With the Structural method, backward movement was shown in PNS, while forward movement was observed in ANS and point A. With the Ricketts method, however, all structures were shown significant backward movement comparing with Structural method(P<0.05). With the Best-fit method, the amount of horizontal movement was similar to that of the Structural method(P>0.05). 2. The palate seemed to be moved downward with Structural method, but there was no measured downward remodeling on nasal floor with Ricketts and Best-fit method(P<0.05). 3. Comparing with Structural method, Ricketts and Best-fit method significantly underestimated the eruption of the teeth by 20% to 30% (P<0.05). 4. The Structural method showed the anteroinferior rotation (43%) and posteroinferior rotation(57%) of the palatal plane, while the Best-fit method showed mostly anterosuperior rotation(87%), but no change was found in the Ricketts method. 5. With the Structural method, there was a statistically significant correlation between the amount of the rotation of the palatal plane and that of N-S line(r=0.86). 6. The measured angles of the long axis of the incisors and molars showed no significant difference in each 3 methods(P>0.05).

  • PDF

Comparative Study on Osseointegration of Calcium Metaphosphate (CMP) Coated Implant to RBM Implant in the Femur of Rabbits (가토의 대퇴부에 Calcium Metaphosphate로 코팅된 임플란트 매식후 골유착에 관한 비교 연구)

  • Kang, Young-Joo;Kim, Ki-Hyun;Lee, Jae-Yeol;Lee, Ju-Min;Ahn, Sang-Wook;Song, Jin-Woo;Jung, Eu-Gene;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.6
    • /
    • pp.511-520
    • /
    • 2010
  • Purpose: This study was conducted in order to compare the efficacy of osseointegration of three different calcium metaphosphate (CMP) coated implants in the rabbit's femur. Materials and Methods: Twenty four rabbits and three different type of CMP coated implants and RBM implants were used in this study. The animals were divided into 4 groups on the basis of implant surface characteristics. Two implants were installed into the condyle of femur of each rabbits. The animals were sacrificed at 2 and 4 weeks after installation. The undecalcified specimens were prepared for histological, radiological examination and histomorphometric analysis of implant-bone contact ratios (BIC) and bone area ratio (BA). Results: Two implants were failed to osseointegrate and implant success rate was 95.2%. There were not any significant inflammatory response in all groups. Fluorescent image at 4 weeks shows that remodeling is slower in RBM group than CMP group. CMP III showed more active remodeling than CMP I, II. In histomorphologic analysis, BIC ratio at 2 weeks was lower than 4 weeks. Conclusion: The results suggest that the ratios of CMP coated implants were higher than that of RBM control group but there is no significantly difference between RBM group and CMP group. In conclusion, CMP coated implant had more clinical availability than RBM implants.

Dlx3 Plays a Role as a Positive Regulator of Osteoclast Differentiation

  • Cha, Ji-Hun;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.32 no.3
    • /
    • pp.85-91
    • /
    • 2007
  • Dlx3 is a homeodomain protein and is known to playa role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM # 190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. Although the observed defects of TDO syndrome involves bone, little is known about the role of Dlx3 in bone remodeling process. In this study, we examined the effect of wild type DLX3 (wtDlx3) expression on osteoclast differentiation and compared it with that of 4-BP DEL DLX3 (TDO mtDlx3). To examine whether Dlx3 is expressed during RANKL-induced osteoclast differentiation, RAW264.7 cells were cultured in the presence of receptor activator of nuclear factor-B ligand (RANKL). Dlx3 protein level increased slightly after RANKL treatment for 1 day and peaked when the fusion of prefusion osteoclasts actively progressed. When wtDlx3 and TDO mtDlx3 were overexpressed in RAW264.7 cells, they enhanced RANKL-induced osteoclastogenesis and the expression of osteoclast differentiation marker genes such as calcitonin receptor, vitronectin receptor and cathepsin K. Since osteoclast differentiation is critically regulated by the balance between RANKL and osteoprotegerin (OPG), we examined the effect of Dlx3 overexpression on expression of RANKL and OPG in C2C12 cells in the presence of bone morphogenetic protein 2. Overexpression of wtDlx3 enhanced RANKL mRNA expression while slightly suppressed OPG expression. However, TDO mtDlx3 did not exert significant effects. This result suggests that inability of TDO mtDlx3 to regulate expression of RANKL and OPG may contribute to increased bone density in TDO syndrome patients. Taken together, it is suggested that Dlx3 playa role as a positive regulator of osteoclast differentiation via up-regulation of osteoclast differentiation-associated genes in osteoclasts, as well as via increasing the ratio of RANKL to OPG in osteoblastic cells.

Effect of isoflavone-enriched whole soy milk powder supplementation on bone metabolism in ovariectomized mice

  • Kim, So Mi;Lee, Hyun Sook;Jung, Jae In;Lim, Su-Min;Lim, Ji Hoon;Ha, Wang-Hyun;Jeon, Chang Lae;Lee, Jae-Yong;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.275-282
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: There is intense interest in soy isoflavone as a hormone replacement therapy for the prevention of postmenopausal osteoporosis. A new kind of isoflavone-enriched whole soy milk powder (I-WSM) containing more isoflavones than conventional whole soy milk powder was recently developed. The aim of this study was to investigate the effects of I-WSM on bone metabolism in ovariectomized mice. MATERIALS/METHODS: Sixty female ICR mice individually underwent ovariectomy (OVX) or a sham operation, and were randomized into six groups of 10 animals each as follows: Sham, OVX, OVX with 2% I-WSM diet, OVX with 10% I-WSM diet, OVX with 20% I-WSM diet, and OVX with 20% WSM diet. After an 8-week treatment period, bone mineral density (BMD), calcium, alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) 5b, osteocalcin (OC), procollagen 1 N-terminal propeptide (P1NP), and osteoprotegenin (OPG) were analyzed. RESULTS: BMD was significantly lower in the OVX group compared to the Sham group but was significantly higher in OVX + 10% I-WSM and OVX + 20% I-WSM groups compared to the OVX group (P < 0.05). Serum calcium concentration significantly increased in the OVX + 10% and 20% I-WSM groups. Serum ALP levels were significantly lower in the OVX + 10% and 20% I-WSM groups compared to the other experimental groups (P < 0.05). OC was significantly reduced in the OVX group compared to the Sham group (P < 0.05), but a dose-dependent increase was observed in the OVX groups supplemented with I-WSM. P1NP and OPG levels were significantly reduced, while TRAP 5b level was significantly elevated in the OVX group compared with the Sham group, which was not affected by I-WSM (P < 0.05). CONCLUSIONS: This study suggests that I-WSM supplementation in OVX mice has the effect of preventing BMD reduction and promoting bone formation. Therefore, I-WSM can be used as an effective alternative to postmenopausal osteoporosis prevention.