• Title/Summary/Keyword: Bone morphogenetic protein signaling

Search Result 34, Processing Time 0.029 seconds

BMPs and their clinical potentials

  • Kim, Mee-Jung;Choe, Senyon
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.619-634
    • /
    • 2011
  • Bone morphogenetic protein (BMP) signaling in diseases is the subject of an overwhelming array of studies. BMPs are excellent targets for treatment of various clinical disorders. Several BMPs have already been shown to be clinically beneficial in the treatment of a variety of conditions, including BMP-2 and BMP-7 that have been approved for clinical application in nonunion bone fractures and spinal fusions. With the use of BMPs increasingly accepted in spinal fusion surgeries, other therapeutic approaches targeting BMP signaling are emerging beyond applications to skeletal disorders. These approaches can further utilize next-generation therapeutic tools such as engineered BMPs and ex vivo-conditioned cell therapies. In this review, we focused to provide insights into such clinical potentials of BMPs in metabolic and vascular diseases, and in cancer.

Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2

  • Kim, Myung-Jin;Park, Seon Young;Chang, Hae Ryung;Jung, Eun Young;Munkhjargal, Anudari;Lim, Jong-Seok;Lee, Myeong-Sok;Kim, Yonghwan
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.308-317
    • /
    • 2017
  • Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth $factor-{\beta}$ ($TGF-{\beta}$) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.

Epithelial-Mesenchymal Interactions for the Development of Intestinal Villi

  • Oh, Seunghoon;Yoo, Young Bok
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.305-311
    • /
    • 2019
  • Small intestine has a structure called villi that increases the mucosal surface area for nutrient absorption. Intricate and tight epithelial-mesenchymal interactions are required for villi development. These interactions are regulated by signaling molecules, physical forces, and epithelial deformation. Signaling molecules include hedgehog (Hh), bone morphogenetic protein (BMP) and Wnt ligands. The Hh ligand is expressed from the epithelium and binds to the underlying mesenchymal cells, resulting in aggregation into mesenchymal clusters. The clusters express BMP and Wnt ligands to control its size and spacing between clusters. The clusters then form villi. Despite the fact that the villi formation is studied extensively, we do not have a complete understanding. In addition, the recent study shows there is a great relationship between the overexpression of the Hh signal and development of cancer in the gastrointestinal tract. Therefore, signaling between epithelial and mesenchymal cells and their physical interactions will be discussed on this review.

Crosstalk between BMP signaling and KCNK3 in phenotypic switching of pulmonary vascular smooth muscle cells

  • Yeongju, Yeo;Hayoung, Jeong;Minju, Kim;Yanghee, Choi;Koung Li, Kim;Wonhee, Suh
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.565-570
    • /
    • 2022
  • Pulmonary arterial hypertension (PAH) is a progressive and devastating disease whose pathogenesis is associated with a phenotypic switch of pulmonary arterial vascular smooth muscle cells (PASMCs). Bone morphogenetic protein (BMP) signaling and potassium two pore domain channel subfamily K member 3 (KCNK3) play crucial roles in PAH pathogenesis. However, the relationship between BMP signaling and KCNK3 expression in the PASMC phenotypic switching process has not been studied. In this study, we explored the effect of BMPs on KCNK3 expression and the role of KCNK3 in the BMP-mediated PASMC phenotypic switch. Expression levels of BMP receptor 2 (BMPR2) and KCNK3 were downregulated in PASMCs of rats with PAH compared to those in normal controls, implying a possible association between BMP/BMPR2 signaling and KCNK3 expression in the pulmonary vasculature. Treatment with BMP2, BMP4, and BMP7 significantly increased KCNK3 expression in primary human PASMCs (HPASMCs). BMPR2 knockdown and treatment with Smad1/5 signaling inhibitor substantially abrogated the BMP-induced increase in KCNK3 expression, suggesting that KCNK3 expression in HPASMCs is regulated by the canonical BMP-BMPR2-Smad1/5 signaling pathway. Furthermore, KCNK3 knockdown and treatment with a KCNK3 channel blocker completely blocked BMP-mediated anti-proliferation and expression of contractile marker genes in HPAMSCs, suggesting that the expression and functional activity of KCNK3 are required for BMP-mediated acquisition of the quiescent PASMC phenotype. Overall, our findings show a crosstalk between BMP signaling and KCNK3 in regulating the PASMC phenotype, wherein BMPs upregulate KCNK3 expression and KCNK3 then mediates BMP-induced phenotypic switching of PASMCs. Our results indicate that the dysfunction and/or downregulation of BMPR2 and KCNK3 observed in PAH work together to induce aberrant changes in the PASMC phenotype, providing insights into the complex molecular pathogenesis of PAH.

Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells (MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진)

  • Nara Jeong;Yung Hyun Choi
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.

The role of microRNAs in cell fate determination of mesenchymal stem cells : balancing adipogenesis and osteogenesis

  • Kang, Hara;Hata, Akiko
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.319-323
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are multipotent stem cells capable of differentiating into adipocytes, osteoblasts, or chondrocytes. A mutually inhibitory relationship exists between osteogenic and adipogenic lineage commitment and differentiation. Such cell fate decision is regulated by several signaling pathways, including Wnt and bone morphogenetic protein (BMP). Accumulating evidence indicates that microRNAs (miRNAs) act as switches for MSCs to differentiate into either osteogenic or adipogenic lineage. Different miRNAs have been reported to regulate a master transcription factor for osteogenesis, such as Runx2, as well as molecules in the Wnt or BMP signaling pathway, and control the balance between osteoblast and adipocyte differentiation. Here, we discuss recent advancement of the cell fate decision of MSCs by miRNAs and their targets. [BMB Reports 2015; 48(6): 319-323]

BMP-2-Enhanced Chondrogenesis Involves p38 MAPK-mediated Down-Regulation of Wnt-7a Pathway

  • Jin, Eun-Jung;Lee, Sun-Young;Choi, Young-Ae;Jung, Jae-Chang;Bang, Ok-Sun;Kang, Shin-Sung
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.353-359
    • /
    • 2006
  • The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates $Wnt-7a/{\beta}$-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of ${\beta}$-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with ${\beta}$-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of ${\beta}$-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of ${\beta}$-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells.

THE ROLE OF BONE MORPHOGENETIC PROTEIN IN THE TOOTH CULTURE (치아 기관배양시 골형성단백의 역할에 관한 연구)

  • Chung, Il-Hyuk;Chung, Jong-Hoon;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.438-443
    • /
    • 2004
  • Objectives : The proper development of the facial structures relies upon a sequence of tightly regulated signaling interactions between the ectoderm and mesoderm involving the participation of several families of signaling molecules. Among these, bone morphogenetic proteins (BMPs) have been suggested to be a key signal that regulates the development of the mandible and the initiation and morphogenesis of the teeth. The aim of this study was to examine the artificial development of the mandibular structures and to examine the role of BMPs on tooth morphogenesis and differentiation using an organ culture system. Materials and Methods : The tooth germs from Ed 11.5, 13.5 mice were dissected, and transplanted into the diastema of the mandible primordia. The mandibles containing the transplanted tooth germs were cultured in vitro. During this period, beads soaked with BMP4 were implanted around the transplanted tooth germs. In addition, a diastema block containing the transplanted tooth germ was dissected, then transferred to an adult mouse kidney. After the organ culture, the developing mandibular explant was removed from the kidney and prepared for the tissue specimens. Odontogeneis of the transplanted tooth germs was examined after Hematoxylin-eosin, Masson-trichrome staining. Results : Proliferation and differentiation of the tooth germs cultured in the diastema was observed. In the BMP4-treated tooth germs, the formation of the first and second molars was noted. The crown of the developing tooth showed the formation of a mature cusp with the deposition of enamel and dentin matrix. In conclusion, it was confirmed that BMP4 is involved in the formation of a dental crown and the differentiation of ameloblasts and odontoblasts of the molar tooth during the development of the transplanted tooth germs.

Functional analysis of Bombyx mori Decapentaplegic gene for bone differentiation in a mammalian cell

  • Park, Seung-Won;Goo, Tae-Won;Choi, Gwang-Ho;Kang, Seok-Woo;Kim, Sung-Wan;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.1
    • /
    • pp.159-165
    • /
    • 2013
  • Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF-${\beta}$) superfamily and are involved in osteoblastic differentiation. The largest TGF-${\beta}$ superfamily subgroup shares genetic homology with human BMPs (hBMPs) and silkworm decapentaplegic (dpp). In addition, hBMPs are functionally interchangeable with Drosophila dpp. Bombyx mori dpp may induce bone formation in mammalian cells. To test this hypothesis, we synthesized the 1,285-base pairs cDNA of full-length B. mori dpp using total RNAs obtained from the fat body of 3-day-old of the $5^{th}$ instar larvae and cloned the cDNA into the pCEP4 mammalian expression vector. Next, B. mori dpp was expressed in C3H10T1/2 cells. The target cells transfected with the pCEP4-Bm dpp plasmid showed biological functions similar to those of osteogenic differentiation induction growth factors such as hBMPs. We determined the relative mRNA expression rates of Runt-related transcription factor 2 (RUNX2), osterix, osteocalcin, and alkaline phosphatase (ALP) to validate the osteoblast-specific differentiation effects of B. mori dpp by performing quantitative real-time RT-PCR. Interestingly, mRNA expression levels of the 3 marker genes except RUNX2, in cells expressing B. mori dpp were much higher than those in control cells and C3H10T1/2 cells transfected with pCEP4. These results suggested that B. mori dpp signaling regulates osterix expression during osteogenic differentiation via RUNX2-independent mechanisms.

Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling

  • Yoo, Han-Seok;Chung, Kang-Hyun;Lee, Kwon-Jai;Kim, Dong-Hee;An, Jeung Hee
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.190-197
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Gallus gallus domesticus (GD) is a natural mutant breed of chicken in Korea with an atypical characterization of melanin in its tissue. This study investigated the effects of melanin extracts of GD on osteoblast differentiation and inhibition of osteoclast formation. MATERIALS/METHODS: The effects of the melanin extract of GD on human osteoblast MG-63 cell differentiation were examined by evaluating cell viability, osteoblast differentiation, and expression of osteoblast-specific transcription factors such as bone morphogenetic protein 2 (BMP-2), small mothers against decapentaplegic homologs 5 (SMAD5), runt-related transcription factor 2 (RUNX2), osteocalcin and type 1 collagen (COL-1) by reverse transcription-polymerase chain reaction and western blotting analysis. We investigated the inhibitory effect of melanin on the osteoclasts formation through tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains in Raw 264.7 cell. RESULTS: The melanin extract of GD was not cytotoxic to MG-63 cells at concentrations of $50-250{\mu}g/mL$. Alkaline phosphatase (ALP) activity and bone mineralization of melanin extract-treated cells increased in a dose-dependent manner from 50 to $250{\mu}g/mL$ and were 149% and 129% at $250{\mu}g/mL$ concentration, respectively (P < 0.05). The levels of BMP-2, osteocalcin, and COL-1 gene expression were significantly upregulated by 1.72-, 4.44-, and 2.12-fold in melanin-treated cells than in the control cells (P < 0.05). The levels of RUNX2 and SMAD5 proteins were higher in melanin-treated cells than in control vehicle-treated cells. The melanin extract attenuated the formation of receptor activator of nuclear factor kappa-B ligand-induced TRAP-positive multinucleated RAW 264.7 cells by 22%, and was 77% cytotoxic to RAW 264.7 macrophages at a concentration of $500{\mu}g/mL$. CONCLUSIONS: This study provides evidence that the melanin extract promoted osteoblast differentiation by activating BMP/SMADs/RUNX2 signaling and regulating transcription of osteogenic genes such as ALP, type I collagen, and osteocalcin. These results suggest that the effective osteoblastic differentiation induced by melanin extract from GD makes it potentially useful in maintaining bone health.