• Title/Summary/Keyword: Bone matrix

Search Result 542, Processing Time 0.025 seconds

Biodegradable Polymers for Tissue Engineering : Review Article (조직 공학용 생분해성 고분자 : 총설)

  • Park, Byoung Kyeu
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.251-263
    • /
    • 2015
  • Scaffolds play a crucial role in the tissue engineering. Biodegradable polymers with great processing flexibility and biocompatability are predominant scaffolding materials. New developments in biodegradable polymers and their nanocomposites for the tissue engineering are discussed. Recent development in the scaffold designs that mimic nano and micro features of the extracellular matrix (ECM) of bones, cartilages, and vascular vessels are presented as well.

The effect of progressive tensional force on mRNA expression of osteoprotegerin and receptor activator of nuclear factor ${\kappa}B$ ligand in the human periodontal ligament cell (기계적 자극이 치주인대 세포의 osteoprotegerin과 receptor activator of nuclear factor ${\kappa}B$ ligand mRNA 발현에 미치는 영향)

  • Lee, Kie-Joo;Lee, Syng-Ill;Hwang, Chung-Ju;Ohk, Seung-Ho;Tian, Yu-Shin
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.262-274
    • /
    • 2005
  • Tooth movement is a result of mutual physiologic responses between the periodontal ligament and alveolar bone stimulated by mechanical strain. The PDL cell and osteoblast are known to have an influence on bone formation by controlling collagen synthesis and alkaline phosphatase activation. Moreover. recent studies have shown that the PDL cell and osteoblast release osteoprotegerin (OPG) and the receptor activator of nuclear factor ぉ ligand (RANKL) to control the level of osteoclast differentiation and activation which in turn influences bone resorption. In this study. progressively increased, continuous tensional force was applied to PDL cells. The objective was to find out which kind of biochemical reactions occur after tensional force application and to illuminate the alveolar bone resorption and apposition mechanism. Continuous and progressively increased tensile force was applied to PDL cells cultured on a petriperm dish with a flexible membrane The amount of $PGE_2$ and ALP synthesis were measured after 1, 3, 0 and 12 hours of force application. Secondly RT-PCR analysis was carried out for OPG and RANKL which control osteoclast differentiation and MMP-1 -8, -9, -13 aud TIMP-1 which regulate the resolution of collagen and resorption of the osteoid layer According to the results. we concluded that progressively increased, concluded force application to human PDL cells reduces $PGE_2$ synthesis, and increases OPG mRNA expression.

Effects of 1,25-dihydroxyvitamin D3 on the differentiation of MC3T3-E1 osteoblast-like cells

  • Kim, Hyun-Soo;Zheng, Mingzhen;Kim, Do-Kyung;Lee, Won-Pyo;Yu, Sang-Joun;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.1
    • /
    • pp.34-46
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effects of 1,25-dihydroxyvitamin $D_3$ on the proliferation, differentiation, and matrix mineralization of MC3T3-E1 osteoblast-like cells in vitro. Methods: MC3T3-E1 osteoblastic cells and 1,25-dihydroxyvitamin $D_3$ were prepared. Cytotoxic effects and osteogenic differentiation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, ALP staining, alizarin red S staining, and reverse transcription-polymerase chain reaction (RT-PCR) for osteogenic differentiation markers such as ALP, collagen type I (Col-I), osteocalcin (OCN), vitamin D receptor (VDR), and glyceraldehyde 3-phosphate dehydrogenase. Results: The MTT assay showed that 1,25-dihydroxyvitamin $D_3$ did not inhibit cell growth and that the rate of cell proliferation was higher than in the positive control group at all concentrations. ALP activity was also higher than in the positive control group at low concentrations of 1,25-dihydroxyvitamin $D_3$ ($10^{-10}$, $10^{-12}$, and $10^{-14}M$). RT-PCR showed that the gene expression levels of ALP, Col-I, OCN, and vitamin D receptor (VDR) were higher at a low concentration of 1,25-dihydroxyvitamin $D_3$ ($10^{-12}M$). Alizarin red S staining after treatment with 1,25-dihydroxyvitamin $D_3$ ($10^{-12}M$) showed no significant differences in the overall degree of calcification. In contrast to the positive control group, formation of bone nodules was induced in the early stages of cell differentiation. Conclusions: We suggest that 1,25-dihydroxyvitamin $D_3$ positively affects cell differentiation and matrix mineralization. Therefore, it may function as a stimulating factor in osteoblastic bone formation and can be used as an additive in bone regeneration treatment.

Regeneration of total tissue using alveolar ridge augmentation with soft tissue substitute on periodontally compromised extraction sites: case report (치주질환 원인의 심한 골소실을 동반한 발치와에 대한 치조제 증강술과 연조직 대체제를 이용한 조직 재생 효과: 증례보고)

  • Yerim Oh;Jae-Kwan Lee;Heung-Sik Um;Beom-Seok Chang;Jong-bin Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.276-284
    • /
    • 2023
  • After tooth extraction, alveolar bone is resorbed over time. Loss of alveolar bone and reduction of upper soft tissue poses difficulties in future implant placement and long-term survival of the implant. This case report focuses on increasing the soft and hard tissues at the implant placement site by using alveolar ridge augmentation and a xenogeneic collagen matrix as a soft tissue substitute in an extraction socket affected by periodontal disease. In each case, the width of the alveolar bone increased to 6 mm, 8 mm, and 4 mm, and regeneration of the interdental papilla around the implant was shown, as well as buccal keratinized gingiva of 4 mm, 6 mm, and 4 mm, respectively. Enlarged alveolar bone facilitates implant surgery, and interdental papillae and keratinized gingiva enable aesthetic prosthesis. This study performed alveolar ridge augmentation on patients with extraction sockets affected by periodontal disease and additionally used soft tissue substitutes to provide a better environment for implant placement and have positive effects for aesthetic and predictive implant surgery.

Effects of Ipriflavone on bone remodeling in the rat calvarial cell (백서 두개관세포에서 Ipriflavone이 골조직 개조에 미치는 영향)

  • Lee, Yong-Seung;Kim, Young-Jun;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.275-285
    • /
    • 2005
  • Ipriflavone (isoprofoxyisoflavone), a synthetic derivative from soy isoflavone diazein, has been shown to inhibit bone resorption and perhaps stimulate bone formation This study was performed to examine the effects of ipriflavone on the proliferation and bone remodeling in rat calvarial cells in vitro The rat calvarial cells were isolated from fetus aged 20 to 21 days and cultured In BGJb media The graded concentration of ipriflavone $(10^{-9}\;10^{-5}M)$ was administered into cultured cells. When the cell proliferation was estimated through the measurement of MTT assay, there was no increase in cellular proliferation of the rat calvarial cell at any ipriflavone concentration. The cellular activity was evaluated through the formation of mineralized nodules stained by alizarin red. The formation of mineralized nodules significantly increased at concentrations of $10^{-8}M,\;10^{-7}M\;and\;10^{-6}M$ ipriflavone. Reverse transcription-polymerase chain reaction analyses (RT-PCR) were done at 7 and 14 days after culture to detect the expression of Bone Sialoprotein (BSP), Type I Collagen (COL I) and Osteocalcin(OCN) As a result, the expressions of BSP and COL I increased on the 7th day of culture and the expression of OCN increased on the 14th day of culture. These results indicate that ipriflavone facilitates the bone remodeling process bvy promoting rat calvarial cell differentiation aid stimulating mineralization through increased expression of extracellular matrix genes. such as BSP. COL I and OCN.

Reconstruction of the Bone Exposed Soft Tissue Defects in Lower Extremities using Artificial dermis(AlloDerm®) (인공 진피(알로덤®)을 이용한 하지의 골이 노출된 연부 조직 결손의 재건)

  • Jeon, Man Kyung;Jang, Young Chul;Koh, Jang Hyu;Seo, Dong Kook;Lee, Jong Wook;Choi, Jai Koo
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.578-582
    • /
    • 2009
  • Purpose: In extensive deep burn of the lower limb, due to less amount of soft tissue, bone is easily exposed. When it happens, natural healing or reconstruction with skin graft only is not easy. Local flap is difficult to success, because adjacent skins are burnt or skin grafted tissues. Muscle flap or free flap are also limited and has high failure rate due to deep tissue damage. The authors acquired good outcome by performing one - stage operation on bone exposed soft tissue defect with AlloDerm$^{(R)}$(LifeCell, USA), an acellular dermal matrix producted from cadaveric skin. Methods: We studied 14 bone exposed soft tissue defect patients from March 2002 to March 2009. Average age, sex, cause of burn, location of wound, duration of admission period, and postoperative complications were studied. We removed bony cortex with burring, until conforming pinpoint bone bleeding. Then rehydrated AlloDerm$^{(R)}$(25 / 1000 inches, meshed type) was applicated on wound, and thin split thickness(6 ~ 8 / 1000 inches) skin graft was done at the immediately same operative time. Results: Average age of patients was 53.6 years(25 years ~ 80 years, SD = 16.8), and 13 patients were male(male : female = 13 : 1). Flame burn was the largest number. (Flame burn 6, electric burn 3, contact burn 4, and scalding burn 1). Tibia(8) was the most affected site. (tibia 8, toe 4, malleolus 1, and metatarsal bone 1). Thin STSC with AlloDerm$^{(R)}$ took without additional surgery in 12 of 14 patients. Partial graft loss was shown on four cases. Two cases were small in size under $1{\times}1cm$, easily healed with simple dressing, and other two cases needed additional surgery. But in case of additional surgery, granulation tissue has easily formed, and simple patch graft on AlloDerm$^{(R)}$ was enough. Average duration of admission period of patients without additional surgery was 15 days(13 ~ 19 days). Conclusion: AlloDerm$^{(R)}$ and thin split thickness skin graft give us an advantage in short surgery time and less limitations in donor site than flap surgery. Postoperative scar is less than in conventional skin graft because of more firm restoration of dermal structure with AlloDerm$^{(R)}$. We propose that AlloDerm$^{(R)}$ and thin split thickness skin graft could be a solution to bone exposured soft tissue defects in extensive deep burned patients on lower extremities, especially when adjacent tissue cannot be used for flap due to extensive burn.

Bone Health and L-ascorbic acid in Postmenopausal Women (폐경 여성의 골 건강과 L-ascorbic acid)

  • Kim, Bokyung;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1142-1148
    • /
    • 2021
  • As the average human lifespan has been extended, there has been a lot of interest in the quality of life of women after menopause. It is known that the average age of menopause among Korean women is 49.7 years, and the post-menopausal life of a woman takes up more than one third of her life. L-ascorbic acid (AsA) is known to be involved in the synthesis and maturation of collagen, a bone constituent protein. The aim of this review is to discuss the potential of AsA in bone health in postmenopausal women. AsA plays an important role in collagen biosynthesis, and collagen is a protein constituting bone and is a necessary material for calcification of the bone matrix. Collagen crosslinking is necessary for the stabilization and elasticity of collagen fibers during growth and matruation of animals, but an excessive increase is likely to lead to further aging because the movement of intercellular nutrients or waste is suppressed. AsA acts as a reducing agent to stabilize the immature collagen crosslinking and suppress pyridinoline production, a mature crosslinking. Therefore, AsA participates in collagen biosynthesis and helps bone tissue health, while regulating the excessive maturation of collagen crosslinking, it is expected to play an important role in bone-related problems that may occur in postmenopausal women.

Dickkopf-1 is involved in BMP9-induced osteoblast differentiation of C3H10T1/2 mesenchymal stem cells

  • Lin, Liangbo;Qiu, Quanhe;Zhou, Nian;Dong, Wen;Shen, Jieliang;Jiang, Wei;Fang, Ji;Hao, Jie;Hu, Zhenming
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.179-184
    • /
    • 2016
  • Bone morphogenetic protein 9 (BMP9) is a potent inducer of osteogenic differentiation of mesenchymal stem cells. The Wnt antagonist Dickkopf-1 (Dkk1) is involved in skeletal development and bone remodeling. Here, we investigated the role of Dkk1 in BMP9-induced osteogenic differentiation of MSCs. We found that overexpression of BMP9 induced Dkk1 expression in a dose-dependent manner, which was reduced by the P38 inhibitor SB203580 but not the ERK inhibitor PD98059. Moreover, Dkk1 dramatically decreased not only BMP9-induced alkaline phosphatase (ALP) activity but also the expression of osteocalcin (OCN) and osteopontin (OPN) and matrix mineralization of C3H10T1/2 cells. Furthermore, exogenous Dkk1 expression inhibited Wnt/β-catenin signaling induced by BMP9. Our findings indicate that Dkk1 negatively regulates BMP9-induced osteogenic differentiation through inhibition of the Wnt/β-catenin pathway and it could be used to optimize the therapeutic use of BMP9 and for bone tissue engineering.