• Title/Summary/Keyword: Bone marrow mesenchymal stem cell

Search Result 139, Processing Time 0.024 seconds

Metformin enhances the osteogenic activity of rat bone marrow mesenchymal stem cells by inhibiting oxidative stress induced by diabetes mellitus: an in vitro and in vivo study

  • Kai Dong;Wen-Juan Zhou;Zhong-Hao Liu
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.54-68
    • /
    • 2023
  • Purpose: The purpose of this study was to determine whether metformin (MF) could alleviate the expresssion of reactive oxygen species (ROS) and improve the osteogenic ability of bone marrow mesenchymal stem cells derived from diabetic rats (drBMSCs) in vitro, and to evaluate the effect of MF on the ectopic osteogenesis of drBMSCs in a nude mouse model in vivo. Methods: BMSCs were extracted from normal and diabetic rats. In vitro, a cell viability assay (Cell Counting Kit-8), tests of alkaline phosphatase (ALP) activity, and western blot analysis were first used to determine the cell proliferation and osteogenic differentiation of drBMSCs that were subjected to treatment with different concentrations of MF (0, 50, 100, 200, 500 µM). The cells were then divided into 5 groups: (1) normal rat BMSCs (the BMSCs derived from normal rats group), (2) the drBMSCs group, (3) the drBMSCs + Mito-TEMPO (10 µM, ROS scavenger) group, (4) the drBMSCs + MF (200 µM) group, and (5) the drBMSCs + MF (200 µM) + H2O2 (50 µM, ROS activator) group. Intracellular ROS detection, a senescence-associated β-galactosidase assay, ALP staining, alizarin red staining, western blotting, and immunofluorescence assays were performed to determine the effects of MF on oxidative stress and osteogenic differentiation in drBMSCs. In vivo, the effect of MF on the ectopic osteogenesis of drBMSCs was evaluated in a nude mouse model. Results: MF effectively reduced ROS levels in drBMSCs. The cell proliferation, ALP activity, mineral deposition, and osteogenic-related protein expression of drBMSCs were demonstrably higher in the MF-treated group than in the non-MF-treated group. H2O2 inhibited the effects of MF. In addition, ectopic osteogenesis was significantly increased in drBMSCs treated with MF. Conclusions: MF promoted the proliferation and osteogenic differentiation of drBMSCs by inhibiting the oxidative stress induced by diabetes and enhenced the ectopic bone formation of drBMSCs in nude mice.

Effects of Culture Conditions on Osteogenic Differentiation in Human Mesenchymal Stem Cells

  • Song, Su-Jin;Jeon, O-Ju;Yang, Hee-Seok;Han, Dong-Keun;Kim, Byung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1113-1119
    • /
    • 2007
  • Human bone marrow-derived mesenchymal stem cells (hBMMSCs) must differentiate into osteogenic cells to allow for successful bone regeneration. In this study, we investigated the effects of different combinations of three soluble osteogenic differentiation-inducing factors [L-ascorbic acid (AC), ${\beta}$-glycerophosphate (${\beta}G$), and bone morphogenic protein-2 (BMP-2)] and the presence of a hydroxyapatite (HA) substrate on hBMMSC osteogenic differentiation in vitro. hBMMSCs were cultured in medium containing various combinations of the soluble factors on culture plates with or without HA coating. After 7 days of culture, alkaline phosphatase (ALP) activity, calcium deposition, and osteoprotegerin (OPG) and osteopontin (OPN) expression were measured. The effects of individual and combined factors were evaluated using a factorial analysis method. BMP-2 predominantly affected expression of early markers of osteogenic differentiation (ALP and OPG). HA had the highest positive effect on OPN expression and calcium deposition. The interaction between AC, ${\beta}G$, and HA had the second highest positive effect on ALP activity.

Homing and Restorative Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Cisplatin Injured Ovaries in Rats

  • Liu, Jiabin;Zhang, Haiying;Zhang, Yun;Li, Nan;Wen, Yuku;Cao, Fanglei;Ai, Hao;Xue, Xiaoou
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.865-872
    • /
    • 2014
  • Premature ovarian failure (POF) is a long-term adverse effect of chemotherapy treatment. However, current available treatment regimens are not optimal. Emerging evidence suggests that bone marrow-derived mesenchymal stem cells (BMSCs) could restore the structure and function of injured tissues, but the homing and restorative effects of BMSCs on chemotherapy injured ovaries are still not clear. In this study, we found that granulosa cell (GC) apoptosis induced by cisplatin was reduced when BMSCs were migrated to granulosa cells (GCs) in vitro. Chemotherapy-induced POF was induced by intraperitoneal injection of cisplatin in rats. BMSCs labeled with enhanced green fluorescent protein (EGFP) were injected into the rats via the tail vein to investigate the homing and distribution of BMSCs in vivo. The number of BMSCs in the ovarian hilum and medulla was greater than in the cortex, but no BMSCs were found in the follicles and corpus lutea. In addition, the BMSCs treatment group's antral follicle count and estradiol levels increased after 30 days, compared with the POF group. Hence, our study demonstrates that intravenously delivered BMSCs can home to the ovaries, and restore its structure and function in POF model rats.

Isolation and Characterization of Cells from Human Adipose Tissue Developing into Osteoblast and Adipocyte (인간 지방조직에서 분리된 줄기세포의 표면항원 및 다분화능 확인)

  • Cho, Hye-Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • Bone marrow derived mesenchymal stem cells (BMSCs) are largely studied for their potential clinical use. But it is hard to get enough number of those cells for clinical trials and give serious pain to the patients. Adipose tissue is derived from the embryonic mesenchyme and contains a stroma that is easily isolated with large amount. This cell population (adipose derived stem cells: ADSCs) can be isolated from human lipoaspirates and like MSCs, differentiate toward the osteogenic, adipogenic, myogenic and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the ADSCs extracted from omental or subcutaneous fat tissue were expanded during third to fifth passages. The phenotype of the ADSCs was identified by the conventional cell surface markers using flow cytometry: positive for CD29 and CD44, but negative for CD34, CD45, CD117 and HLA-DR that similar to those observed on BMSCs. The ADSCs were able to differentiate into the osteoblast or adipocytes with induction media. Finally, ADACs expressed multiple CD marker antigens similar to those observed on BMSCs and differentiated into osteoblast, adipocyte. With this, human adipotissue contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

  • PDF

Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review

  • Kim, Ji-Youn;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neurogenic. The tissue of origin for MSCs defines them as bone marrow-derived stem cells, adipose tissue-derived stem cells, and, among many others, dental stem cells. According to the tissue of origin, DSCs are further stratified into dental pulp stem cells, periodontal ligament stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, and dental papilla cells. There are numerous in vitro/in vivo reports suggesting successful mineralization potential or osteo/odontogenic ability of MSCs. Still, there is further need for the optimization of MSCs-based tissue engineering methods, and the introduction of genes related to osteo/odontogenic differentiation into MSCs might aid in the process. In this review, articles that reported enhanced osteo/odontogenic differentiation with gene introduction into MSCs will be discussed to provide a background for successful bone tissue engineering using MSCs with artificially introduced genes.

Diversity of Ion Channels in Human Bone Marrow Mesenchymal Stem Cells from Amyotrophic Lateral Sclerosis Patients

  • Park, Kyoung-Sun;Choi, Mi-Ran;Jung, Kyoung-Hwa;Kim, Seung-Hyun;Kim, Hyun-Young;Kim, Kyung-Suk;Cha, Eun-Jong;Kim, Yang-Mi;Chai, Young-Gyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.337-342
    • /
    • 2008
  • Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to $10^{th}$ passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of $K^+$ currents, including noise-like $Ca^{+2}$-activated $K^+$ current ($IK_{Ca}$), a transient outward $K^+$ current ($I_{to}$), a delayed rectifier $K^+$ current ($IK_{DR}$), and an inward-rectifier $K^+$ current ($K_{ir}$) were heterogeneously present in these cells, and a TTX-sensitive $Na^+$ current ($I_{Na,TTX}$) was also recorded. In the RT-PCR analysis, Kv1.1,, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, ($I_{Na,TTX}$) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs.

Investigation of postnatal stem cells from canine dental tissue and bone marrow (성견 치계줄기세포 및 골수줄기세포 특성에 관한 연구)

  • Jhin, Min-Ju;Kim, Young-Sung;Kim, Su-Hwan;Kim, Kyoung-Hwa;Lee, Chul-Woo;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.2
    • /
    • pp.119-128
    • /
    • 2009
  • Purpose: The aim of this study was to evaluate the stemness of cells from canine dental tissues and bone marrow. Methods: Canine periodontal ligament stem cells (PDLSC), alveolar bone stem cells (ABSC) and bone marrow stem cells(BMSC) were isolated and cultured. Cell differentiations (osteogenic, adipogenic and chondrogenic) and surface antigens (CD146, STRO-1, CD44, CD90, CD45, CD34) were evaluated in vitro. The cells were transplanted into the subcutaneous space of nude mice to assess capacity for ectopic bone formation at 8 weeks after implantation. Results: PDLSC, ABSC and BMSC differentiated into osteoblasts, adipocytes and chondrocytes under defined condition. The cells expressed the mesenchymal stem cell markers differently. When transplanted into athymic nude mice, these three kinds of cells with hydroxyapatite /${\beta}$- tricalcium phosphate (HA/TCP) carrier showed ectopic bone formation. Conclusions: This study demonstrated that canine dental stem cells have stemness like bone marrow stem cells. Transplantation of these cells might be used as a therapeutic approach for dental stem cell-mediated periodontal tissue regeneration.

Growth and Osteoblastic Differentiation of Mesenchymal Stem Cells on Silk Scaffolds

  • Cho, Hee-Yeon;Baik, Young-Ae;Jeon, Suyeon;Kwak, Yoon-Hae;Kweon, Hae Yong;Jo, You Young;Lee, Kwang Gill;Park, Young Hwan;Kang, Dongchul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.303-311
    • /
    • 2013
  • In this study, we compared the efficiency of osteoblast differentiation media (ODM) containing three distinct reagent combinations in osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in monolayer culture. In addition, we analyzed growth and differentiation of hBMSCs on silk scaffolds and examined the bone-forming activity of a nanofibrous silk scaffold in a tibia diaphysis defect model of a rat hind limb with intramedullary nailing. Although all three ODM increased alkaline phosphatase activity to a comparable extent, the ODM containing bone morphogenetic protein-2 (BMP-2) was found to be significantly less effective in promoting mineral deposition than the others. Growth of hBMSCs on sponge-form silk scaffolds was faster than on nanofibrous ones, while osteoblastic differentiation was apparent in the cells grown on either type of scaffold. By contrast, bone formation was observed only at the edge of the nanofibrous scaffold implanted in the tibia diaphysis defect, suggesting that use of the silk scaffold alone is not sufficient for the reconstitution of the long bone defect. Since silk scaffolds can support cell growth and differentiation in vitro, loading MSCs on scaffolds might be necessary to improve the bone-forming activity of the scaffold in the long bone defect model.

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.

Olig2-expressing Mesenchymal Stem Cells Enhance Functional Recovery after Contusive Spinal Cord Injury

  • Park, Hwan-Woo;Oh, Soonyi;Lee, Kyung Hee;Lee, Bae Hwan;Chang, Mi-Sook
    • International Journal of Stem Cells
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 2018
  • Background and Objectives: Glial scarring and inflammation after spinal cord injury (SCI) interfere with neural regeneration and functional recovery due to the inhibitory microenvironment of the injured spinal cord. Stem cell transplantation can improve functional recovery in experimental models of SCI, but many obstacles to clinical application remain due to concerns regarding the effectiveness and safety of stem cell transplantation for SCI patients. In this study, we investigated the effects of transplantation of human mesenchymal stem cells (hMSCs) that were genetically modified to express Olig2 in a rat model of SCI. Methods: Bone marrow-derived hMSCs were genetically modified to express Olig2 and transplanted one week after the induction of contusive SCI in a rat model. Spinal cords were harvested 7 weeks after transplantation. Results: Transplantation of Olig2-expressing hMSCs significantly improved functional recovery in a rat model of contusive SCI model compared to the control hMSC-transplanted group. Transplantation of Olig2-expressing hMSCs also attenuated glial scar formation in spinal cord lesions. Immunohistochemical analysis showed that transplanted Olig2-expressing hMSCs were partially differentiated into Olig1-positive oligodendrocyte-like cells in spinal cords. Furthermore, NF-M-positive axons were more abundant in the Olig2-expressing hMSC-transplanted group than in the control hMSC-transplanted group. Conclusions: We suggest that Olig2-expressing hMSCs are a safe and optimal cell source for treating SCI.