• Title/Summary/Keyword: Bone marrow cells

Search Result 883, Processing Time 0.031 seconds

Osteogenic differentiation of bone marrow derived stem cells in gelatin-hydroxyapatite nanocomposite

  • Jeon, Hyun-Jun;Hwang, Young-Sup;Kim, Uk-Kyu;Hwang, Dae-Seok;Lee, Kwang-Ho;Chang, Myung-Cheol
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • Purpose: Gelatin-hydroxyapatite nanocomposite is similar to inorganic nanostructure of bone. To make a scaffold with osteoinductivity, bone marrow derived stem cells from rabbit femur were impinged into the nanocomposite. This vitro study was to test osteogenic differentiation of the stem cells in the nanocomposite, which was made by authors. Material & Methods: Gel-HA nanocomposite with 10g of HA, 3 g of Gel has been made by co-precipitation process. Bone marrow was obtained from femur of New Zealand White rabbits and osteogenic differentiation was induced by culturing of the BMSCs in an osteogenic medium. The BMSCs were seeded into the Gel-HA nanocomposite scaffold using a stirring seeding method. The scaffolds with the cells were examined by scanning electron microscopy (SEM), colorimetry assay, biochemical assay with alkaline phosphatase (ALP) diagnostic kit, osteocalcin ELISA kit. Results: Gel-HA nanocomposite scaffolds were fabricated with relatively homogenous microscale pores ($20-40{\mu}m$). The BMSCs were obtained from bone marrow of rabbit femurs and confirmed with flow cytometry, Alizarin red staining. Attachment and proliferation of BMSCs in Gel-HA nanocomposite scaffold could be identified by SEM, ALP activity and osteocalcin content of BMSCs. Conclusion: The Gel-HA nanocomposite scaffold with micropores could be fabricated and could support BMSCs seeding, osteogenic differentiation.

Effect of Molybdenum Induced Copper Deficiency on Peripheral Blood Cells and Bone Marrow in Buffalo Calves

  • Randhawa, C.S.;Randhawa, S.S.;Sood, N.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.509-515
    • /
    • 2002
  • Copper deficiency was induced in eight male buffalo calves by adding molybdenum (30 ppm wet basis) to their diet. Copper status was monitored from the liver copper concentration and a level below 30 ppm (DM basis) was considered as deficient. Haemoglobin, haematocrit, total and differential leucocyte numbers were determined. The functions of peripheral neutrophils were assessed by in vitro phagocytosis and killing of Staphylococcus aureus. The effect of molybdenum induced copper deficiency on bone marrow was monitored. The mean total leucocyte count was unaffected whereas a significant fall in neutrophil count coincided with the fall in hepatic copper level to $23.9{\pm}2.69$ ppm. Reduced blood neutrophil numbers was not accompanied by any change in the proportion of different neutrophil precursor cells in bone marrow. It was hypothesised that buffalo calves were more tolerant to dietary molybdenum excess than cattle. It was concluded that neutropenia in molybdenum induced copper deficiency occurred without any effect on their synthesis and maturation process. Bone marrow studies in healthy calves revealed higher percentage of neutrophilic myelocytes and metamyelocytes as compared to cattle.

Combined Genotoxic Effects of Aflatoxin B1, Ochratoxin A and Zearalenone in Rat Bone Marrow and Blood Leukocytes

  • Tigran, Harutyunyan;Anna, Karapetyan;Galina, Hovhannisyan;Rouben, Aroutiounian
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.3
    • /
    • pp.189-191
    • /
    • 2013
  • Mycotoxins such as aflatoxin B1 (AFB1), ochratoxin A (OTA) and zearalenone (ZEA) are widespread contaminants of food and feedstuffs. It is very likely, that humans and animals are always exposed to mixtures of mycotoxins rather than to individual compounds. Therefore, risk assessments should consider mixture toxicity data. In the present study the combination of AFB1, OTA and ZEA was tested for genotoxicity in rat bone marrow and blood leukocytes after 15, 30 and 60 days treatment. The level of DNA damage was determined by the comet assay. The tail intensity and Olive tail moment in leukocytes and bone marrow cells were significantly higher than in controls. At the same time, the level of DNA damage in bone marrow cells was higher than in leukocytes. The data suggests that prolonged exposure to mycotoxins combination through food consumption can induce DNA damage contributing to the harmful effects in vivo.

Neuropeptide Y improves cisplatin-induced bone marrow dysfunction without blocking chemotherapeutic efficacy in a cancer mouse model

  • Park, Min Hee;Jung, In Kyung;Min, Woo-Kie;Choi, Jin Ho;Kim, Gyu Man;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.417-422
    • /
    • 2017
  • Cisplatin is the most effective and widely used chemotherapeutic agent for many types of cancer. Unfortunately, its clinical use is limited by its adverse effects, notably bone marrow suppression leading to abnormal hematopoiesis. We previously revealed that neuropeptide Y (NPY) is responsible for the maintenance of hematopoietic stem cell (HSC) function by protecting the sympathetic nervous system (SNS) fibers survival from chemotherapy-induced bone marrow impairment. Here, we show the NPY-mediated protective effect against bone marrow dysfunction due to cisplatin in an ovarian cancer mouse model. During chemotherapy, NPY mitigates reduction in HSC abundance and destruction of SNS fibers in the bone marrow without blocking the anticancer efficacy of cisplatin, and it results in the restoration of blood cells and amelioration of sensory neuropathy. Therefore, these results suggest that NPY can be used as a potentially effective agent to improve bone marrow dysfunction during cisplatin-based cancer therapy.

Response of Rabbit Appendix Cells to Specific Antigen and Mitogen (가토충양돌기세포(家兎蟲樣突起細胞)의 특이항원(特異抗原) 및 Mitogen에 대(對)한 반응(反應))

  • Ha, Tai-You
    • The Journal of the Korean Society for Microbiology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 1975
  • Despite a number of recent studies on appendix its function appears to remain unknown. The present studies were undertaken in order to extend and confirm the previous studies concerning the role of appendix in immune response. An early hemagglutinin response of mercaptoethanol sensitive antibody(IgM antibody) in rabbit injected intravenously(i.v.) with 200mcg of bovine gamma globulin(BGG) was abolished by lethal whole body irradiation(900 r), but preserved in animals whose appendix and bone marrow were shielded during irradiation. Late formation of mercaptoethanol resistant antibody(IgG antibody) and the development of memory in bone marrow shielded animals were not affected by irradiation of the appendix. Formation of either IgM or IgG antibody to sheep red blood cells(SRBC) injected i.v. as determined by direct plaque forming cell(DPFC) technique in spleen were effectively abolished by appendectomy, thymectomy, or both followed by irradiation. When bone marrow was shielded in combination with autologous appendix reconstitution, DPFC response was about 5 times greater than the sum of two. Lysed appendix cells failed to restore the response. Lethally irradiated rabbits restored with combination of autologous appendix and thymus cells showed DPFC responses which were essentially normal. Three pools of appendix were obtained by manual separation technique and were stimulated with soluble concanavalin A(Con A), phytohemagglutinin-P(PHA) and pokeweed mitogen(PWM). Rabbit appendix cells responded to Con A, PHA and PWM. Cells of thymus dependent area(TDA) of the appendix were relatively enriched in their response to T cell mitogens compared to dome and follicle cells. The PHA/Con A responsive ratio of appenix TDA subpopulation was high, indicating that Con A responsive cells have a wider distribution among appendix. This finding showed that interfollicular area of the appendix is thymus-dependent. The present studies confirmed other evidence that the rabbit appendix cells itself are unable to form antibody and T lymphocytes in appendix TDA may be heterogenous, and that the appendix cells are synergistic with either bone marrow or thymus cells in the early hemagglutinin on splenic antibody response to BGG or SRBC.

  • PDF

Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow

  • Kim, Su-Hwan;Kim, Young-Sung;Lee, Su-Yeon;Kim, Kyoung-Hwa;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.4
    • /
    • pp.192-200
    • /
    • 2011
  • Purpose: The aim of this study is to compare the gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow for characterization of dental stem cells. Methods: We employed GeneChip analysis to the expression levels of approximately 32,321 kinds of transcripts in 5 samples of bone-marrow-derived mesenchymal stem cells (BMSCs) (n=1), periodontal ligament stem cells (PDLSCs) (n=2), and dental pulp stem cells (DPSCs) (n=2). Each cell was sorted by a FACS Vantage Sorter using immunocytochemical staining of the early mesenchymal stem cell surface marker STRO-1 before the microarray analysis. Results: We identified 379 up-regulated and 133 down-regulated transcripts in BMSCs, 68 up-regulated and 64 down-regulated transcripts in PDLSCs, and 218 up-regulated and 231 down-regulated transcripts in DPSCs. In addition, anatomical structure development and anatomical structure morphogenesis gene ontology (GO) terms were over-represented in all three different mesenchymal stem cells and GO terms related to blood vessels, and neurons were over-represented only in DPSCs. Conclusions: This study demonstrated the genome-wide gene expression patterns of STRO-$1^+$ mesenchymal stem cells derived from dental tissues and bone marrow. The differences among the expression profiles of BMSCs, PDLSCs, and DPSCs were shown, and 999 candidate genes were found to be definitely up- or down-regulated. In addition, GOstat analyses of regulated gene products provided over-represented GO classes. These data provide a first step for discovering molecules key to the characteristics of dental stem cells.

The Biocompatibility Of Cultured Bone Marrow Cells And Gingival Fibroblasts On The Titanium Surfaces (티타늄 배양에 대한 배양골수와 치은 섬유아세포의 생체적합성)

  • Oh, Choong-Young;Park, Joon-Bong;Kwon, Young-Hyuk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.143-160
    • /
    • 1996
  • The purpose of this study was to evaluate the response in aspect of attachment and growth rate of osteoblasts and growth rate of osteoblasts and human gingival fibroblasts to the commercially pure titanium(CP titanium)and titanium alloy(Ti-6AI-4V) that are used widely as implant materials, and to obtain the basic information to ideal implant materials. In the studly, commercially pure titanium in first test group, titanium alloy(Ti-6AI-4V) in second test group, cobalt-chrome-molybdenum alloy(Co-Cr-Mo alloy) in positive control group, and tissue culture polystyrene plate in negative control group were used. The results of this study were as follows. 1. Bone marrow cells cultured on CP titanium and Ti-6Al-4V showed significantly greater attachment and growth rate(p(0.05) compared to Co-Cr-Mo alloy in each time. 2. There were no significant differences(p>0.05) in attachment and growth rate of bone marrow cells cultured on CP titanium and Ti-6AI-4V or tissue culture plate. 3. Most bone marrow cells cultured on CP titanium, Ti-6Al-4V and tissue culture plate were attached well to each substratum in first 2days, and then, grew at higher growth rate. On the other hand, some cells cultured on Co-Cr-Mo alloy failed to attach in first 2 days, and then, attached cells grew at lower growth rate than other groups. 4. Attachment and growth rates of gingival fibroblasts cultured on CP titanium and Ti-6Al-4V showed no significant differences(p>0.05) compared to Co-Cr-Mo alloy in 2 days, but significantly greater increase(p<0.05) in 5 and 9 days. 5. There were no significantly differences(p>0.05) between growth rates on gingival fibroblasts cultured on CP titanium, Ti-6Al-4V and tissue culture plate in 2 and 5days, but a significant lower growth rate(p<0.05) on CP titanium and Ti-6Al-4V versus tissue culture plate. 6. Some gingival fibroblasts cultured on all specimen groups failed to attach, but attached cells grew well, especially on CP titanium, Ti-GAl-4V and tissue culture plate. 7. There were no significant differences(P>0.05) between growth rates of both bone marrow cells and gingival fibroblasts cultured on CP titanium and Ti-6AI-4V. As a result of this study, both commercially pure titanium and Ti-6AI-4V showed excellent biocompatibility and there was no significant difference in the cellular response to the both metals. Bone marrow cells cultured on each substratum showed significantly greater growth rate and responded sensitively to cytotoxic effects of metal surfaces compared to gingival fibroblasts. Considering cell response to the substrate, it was likely that the composition itself of titanium metals have no significant effect on the biocompatibility. Further study need to be done to evaluate the influence of surface characteristics on cellular responses.

  • PDF

Hematopoietic Stem Cells and Bone Marrow Microenvironment: Current and Emerging Concepts (골수 미세환경에서 조혈줄기세포의 기능조절에 대한 고찰- 현재 및 새로운 개념)

  • Lee, Won Jong;Park, Seong Hyun;Park, Jun Hee;Oh, Seong Hwan;Lee, Dongjun
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.468-475
    • /
    • 2022
  • The functional distinction between stem and progenitor cells is well established in several tissues, particularly in the blood. There, hematopoietic stem cells preserve their self-renewal potential and reconstitution ability in the bone marrow niche. Bone marrow represents a unique setting in which to examine how stroma influences tissue function. It was the setting in which the experimental definition of a niche was first provided in mammalian stem cell biology and where clear evidence for non-cell-autonomous oncogenesis was first defined. The relationship between bone and blood is ancient as all animals since the divergence of fish that have bones and blood, make blood in their bones. This long coevolution engendered complex interrelationships, including the first proposed and first experimentally defined niche for stem cells in mammals. Multiple bone marrow stromal cell types serve as regulators of hematopoiesis, and the dysfunction of some causes myelodysplasia and leukemia. However, no comprehensive atlas of stromal subpopulations exists. Therefore, we think these data point to something of importance, such as how the needs and challenges of the organism become translated down to distinct cell types that critically govern specific functions within tissues and do so at the level of a single molecule. We think this will be of broad interest to those focusing on systems biology and the physiology of organisms, particularly those seeking a molecular basis for understanding cell and tissue behavior. We summarized the current and emerging concepts of hematopoietic stem cells and bone marrow niche.

The effect of 3mW 850nm Laser Diode on RAT BM-cell (3mW 850nm Laser Diode가 Rat BM-Cell에 미치는 효과)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.514-515
    • /
    • 2008
  • Low level laser therapy has various therapy effects. This paper performed the basic study for developing the Low Level Laser Therapy Equipment for medical treatment. The apparatus has been fabricated using the laser diode and microprocessor unit. This equipment was fabricated using a micro-controller and a laser diode, and designed to enable us to control light time, frequency and so on. In this study, the designed device was used irradiation to find out how 850 nm laser diode affected the cell proliferation of RAT bone-marrow cells. Experiment was performed to irradiation group and non-irradiation group for Rat bone marrow cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of micro plate reader. As a result, the cell increase of Rat bone marrow cells was verified in irradiation group as compared to non-irradiation group. The fact that specific wavelength irradiation has an effect on cell vitality and proliferation is known through this study.

  • PDF

A Study of Micronucleus Induction with Methyl Formate and 2-Methylbutane in Bone Marrow Cells of Male ICR Mice

  • Kim, Soo-Jin;Rim, Kyung-Taek;Kang, Min-Gu;Kim, Jong-Kyu;Chung, Yong-Hyun;Yang, Jeong-Sun
    • Safety and Health at Work
    • /
    • v.1 no.1
    • /
    • pp.80-86
    • /
    • 2010
  • Objectives: We investigated the genotoxicity of two chemicals, methyl formate and 2-methylbutane, using male ICR mice bone marrow cells for the screening of micronucleus induction. Although these two chemicals have already been tested numerous times, a micronucleus test has not been conducted and the amounts used have recently been increased. Methods: 7 week male ICR mice were tested at dosages of 250, 500, and 1,000 mg/kg for methyl formate and 500, 1,000, and 2,000 mg/kg for 2-methlybutane, respectively. After 24 hours of oral administration with the two chemicals, the mice were sacrificed and their bone marrow cells were prepared for smearing slides. Results: As a result of counting the micronucleated polychromatic erythrocyte (MNPCE) of 2,000 polychromatic erythrocytes, all treated groups expressed no statistically significant increase of MNPCE compared to the negative control group. There were no clinical signs related with the oral exposure of these two chemicals. Conclusion: It was concluded that the two chemicals did not induce micronucleus in the bone marrow cells of ICR mice, and there was no direct proportion with dosage. These results indicate that the two chemicals have no mutagenic potential under each study condition.