• Title/Summary/Keyword: Bone formation

Search Result 1,717, Processing Time 0.032 seconds

Evaluation of bone formation by recombinant human BMP-2 and rapid prototype titanium cap in rabbit calvaria using micro computed tomography (RP titanium cap과 rhBMP-2를 이용하여 형성된 신생골의 미세전산화단층촬영을 이용한 평가)

  • Han, Man-Seung;Jung, Seung-Gon;Kim, Bang-Sin;Yang, Ji-Woong;Kook, Min-Suk;Park, Hong-Ju;Ryu, Sun-Youl;Oh, Hee-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.466-472
    • /
    • 2010
  • Introduction: This study examined the effect of recombinant human bone morphogenetic protein (rhBMP)-2 and $\beta$-tricalcium phosphate ($\beta$-TCP) on new bone formation in a rabbit calvarium using a rapid prototype titanium cap (RP Ti cap). Materials and Methods: Eight New Zealand white rabbits were used in this study. Hemispherical RP Ti caps (10 mm in diameter) were implanted subperiosteally on the rabbit calvaria. $\beta$-TCP was filled in the RP Ti cap in the control group, and rhBMP-2 soaked $\beta$-TCP was used in experimental group. The rabbits were sacrificed 2 and 4 weeks after the operation. The volume and pattern of newly formed bone was analyzed by micro computed tomography (CT). Results: Macroscopically, there were no abnormal findings in any of the animals. The micro CT images revealed new bone from the calvaria that expanded gradually toward the top of the titanium cap, particularly along the inner surface of the titanium cap in the experimental group at 4 weeks after grafting. There was no significant difference in new bone volume ratio between the control and experimental groups at 2 weeks after grafting. There was a statistically significant difference in the new bone volume ratio between the experimental ($14.1{\pm}1.8\;%$) and control ($7.2{\pm}1.5\;%$) groups at 4 weeks after grafting (P<0.01). Conclusion: The RP Ti cap can effectively guide new bone formation and rhBMP-2 can induce the new bone formation.

Effect of Combination Graft of Choukroun's Platelet-rich-fibrin with Silk Fibroin Powder in the Peri-implant Defects (임플란트 주위 골 결손 부위에 Choukroun's Platelet-rich-fibrin와 실크 분말 복합 이식재 사용)

  • Jang, Eun-Sik;Lee, Hyung-Seok;Lee, Hee-Sung;Lee, Hee-Jong;Park, Ki-Yu;Park, Young-Wook;Yoon, Youn-Jin;Hong, Soon-Min;Park, Jun-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2011
  • Purpose: Choukroun's platelet-rich-fibrin (PRF) is composed of platelets, white blood cells and fibrin matrix. It does not induce enough bone formation by itself but it can improve bone formation with calcium. Silk fibroin does not cause inflammatory reactions because it is bio-compatible and degradable. The purpose of this study was to exam the bone formation when a combination of Choukroun's PRF and silk fibroin was used. Methods: In this study, cell reactions to silk powder with differing molecular weights was first tested to select the appropriate silk powder. Then we applied these bone graft materials on defects of skull and in a peri-implant bony defect model in New Zealand rabbits. The results between the experimental and control s (non-grafted) group were analyzed. Results: The small sized silk fibroin powder showed increased cellular proliferation for bone-regeneration. There was no statistically significant difference between the experimental group and the control group at 6 weeks, but more new bone formation was observed in the combination graft group at 12 weeks (P<0.05). And in the dental implant model, the combination bone graft group showed much improved torque test results, which was statistically significant. Histomorphometric analysis showed more regenerated cortical bone and a higher mean bone to implant in the experimental group. Both were statistically significant. Conclusion: The combination graft of Choukroun's platelet-rich-fibrin (PRF) and silk fibroin powder can successfully restore the bony defects in a skull defected model and a peri-implant bony defects model.

THE EFFECTS OF THE BIOGLASS AND THE NATURAL CORAL ON HEALING PROCESS OF THE ALVEOLAR BONE DEFECTS (생체유리 및 천연산호 이식재가 성견 치조골 결손부의 재생에 미치는 영향)

  • Choi, Hyun-Soo;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.907-931
    • /
    • 1996
  • The purpose of this study was to study of the effects of the bioglass and the natural coral on healing process of the alveolar bone defects. Three adult dogs aged 1 to 2 years were used in this study. Experimental alveolar bone defects were created surgically with surgical bur and bone chisel at the furcation area of the buccal surface of the right and left mandibular 3rd, 4th premolars. Twelve experimental alveolar bone defects were devided into four groups according to the type of graft materials. The groups were as follows : 1. flap operation with root planing & curettage(Negative control group) 2. flap operation with autogenous bone(Positive control group) 3. flap operation with bioglass(BG group) 4. flap operation with natural coral(NC group) At 2, 4, and 8 weeks, the dogs were serially sacrificed and specimens were prepared with Hematoxylin-Eosin stain for light microscopic evaluation. The results of this study were as follows : 1. The defect areas were filled with granulation tissue at two weeks in negative control group. But in other groups, the appearance of connective tissues around graft materials were formed more densely and the response of inflammation by graft materials itself was not found. 2. In every control and experimental groups at two weeks, there was seen the accumulation of the formation of new bone trabeculae at the bottom of defects and gradually expanded toward the graft materials and in autogenous group there was slightly seen the formation of new cementum. 3. There was seen the erosion of central portion of bioglass particles at two weeks in BG group, and the erosion of the central portion was developed more progressively and was filled with bone-like tissues at eight weeks. 4. The natural coral particles were encapsulated by densely connective tissues and seen the formation of new bone tissues at four weeks and developed more new bone and cementum formation at eight weeks. From the results of this study, the bioglass and the natural coral may be biocompatible and have a weak adverse reaction to the periodontal tissues.

  • PDF

EFFECTS OF COMPRESSION ON DISTRACTED AREA DURING MANDIBULAR DISTRACTION IN RABBITS (가토에서 하악골신장술시 신장부에 대한 가골압축의 효과)

  • Park, Hong-Ju;An, Jin-Suk;Kook, Min-Suk;Oh, Hee-Kyun;Ryu, Sun-Youl;Cho, Jin-Hyoung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Purpose: To evaluate the effect of compression on the distracted area in new bone formation during mandibular distraction osteogenesis in rabbits. Materials and method: Sixteen rabbits, weighing approximately 2 Kg, and the prefabricated distraction device were used. With the rabbits under general anesthesia, we performed vertical osteotomies between the anterior and posterior mandibular teeth and then placed the distraction device. After a 5 -day latency period, the mandible was distracted to a length of 10.0 mm at a rate of 1 mm/day and then immediately compressed 4 mm in the experimental group (n=8). In the control group (n=8), the mandible was distracted to a length of 6.0 mm at a rate of 1 mm/day. Rabbits in the control group were killed at 2 and 8 weeks during the consolidation period. The specimens were evaluated with light microscope after H & E stain. Histomorphometric analysis was done at 8 week specimens. Results: All experimental animals showed mandibular elongation on the macroscopical and radiographic evaluations. At 2 week, immature bone formation was observed from the surface of the host bone margins with collagen fibers arranged parallel to the direction of distraction in the control group; in the experimental group, immature bone formation was observed adjacent to the host bone, and the collagen fibers were not arranged uniformly. At 8 week, spindle-shaped new bone formation was seen in the direction of distraction in distracted area of the control group, while in the experimental group, the newly formed bone was arranged in a multidirectional manner, like the pattern of trabeculae. In the histomorphometric analysis of 8 weeks, the area of bone deposition was $2.12{\pm}\;0.75\;inch^2$ in the experimental group and $0.87{\pm}0.51\;inch^2$ in the control group (p<0.01). The bone deposition ratio was $29.60{\pm}10.50%$ in the experimental group and $12.10{\pm}7.17%$ in the control group (p<0.01). Conclusion: These results suggest that compression after over-distraction during the mandibular distraction osteogenesis is an effective method of increasing the amount of newly formed bone in distracted area.

The Effect of $\beta$-Tricalcium Phosphate and Deproteinized Bovine Bone on Bone Formation in the Defects of Rat Calvaria (흰쥐 두개골 결손부에서 베타-트리칼슘 인산염과 탈단백우골의 골형성 효과)

  • Jung, Seung-Gon;Park, Hong-Ju;Ryu, Sun-Youl
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.313-323
    • /
    • 2010
  • Purpose: This study was conducted to evaluate the effect of beta-tricalcium phosphate (Cerasorb$^{(R)}$, Germany) and deproteinized bovine bone (Bio-Oss$^{(R)}$, Switzerland) grafted to the defect of rat calvaria artificially created and the effect of use of absorbable membrane (BioMesh$^{(R)}$, Korea) on new bone formation. Materials and Methods: Transosseous circular calvarial defects with diameters of 5 mm were prepared in the both parietal bone of 30 rats. In the control group I, no specific treatment was done on the defects. In the control group II, the defects were covered with absorbable membrane. In the experimental group I, deproteinized bovine bone was grafted without absorbable membrane; in the experimental group II, deproteinized bovine bone was grafted with absorbable membrane; in the experimental group III, beta-tricalcium phosphate was grafted without absorbable membrane; in the experimental group IV, beta-tricalcium phosphate was grafted with absorbable membrane. The animals were sacrificed after 3 weeks and 6 weeks respectively, and histologic and histomorphometric evaluations were performed. Results: Compare to the control groups, the experimental groups showed more newly formed bone. Between the experimental groups, beta-tricalcium phosphate showed more resorption than deproteinized bovine bone. Stabilization of grafted material and interception of the soft tissue invasion was observed in the specimen treated with membrane. There was no statistical difference between the experimental group I, III and experimental group II, IV classified by graft material, but statistically significant increase in the amount of newly formed bone was observed in the experimental group I, II and II, IV classified by the use of membrane (P<0.05). Conclusion: Both beta-tricalcium phosphate and deproteinized bovine bone showed similar osteoconductibility, but beta-tricalcium phosphate is thought to be closer to ideal synthetic graft material because it showed higher resorption rate in vivo. Increased new bone formation can be expected in bone graft with use of membrane.

Comparative analysis of the in vivo kinetic properties of various bone substitutes filled into a peri-implant canine defect model

  • Jingyang Kang;Masaki Shibasaki;Masahiko Terauchi;Narumi Oshibe;Katsuya Hyodo;Eriko Marukawa
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.2
    • /
    • pp.96-107
    • /
    • 2024
  • Purpose: Deproteinized bovine bone or synthetic hydroxyapatite are 2 prevalent bone grafting materials used in the clinical treatment of peri-implant bone defects. However, the differences in bone formation among these materials remain unclear. This study evaluated osteogenesis kinetics in peri-implant defects using 2 types of deproteinized bovine bone (Bio-Oss® and Bio-Oss/Collagen®) and 2 types of synthetic hydroxyapatite (Apaceram-AX® and Refit®). We considered factors including newly generated bone volume; bone, osteoid, and material occupancy; and bone-to-implant contact. Methods: A beagle model with a mandibular defect was created by extracting the bilateral mandibular third and fourth premolars. Simultaneously, an implant was inserted into the defect, and the space between the implant and the surrounding bone walls was filled with Bio-Oss, Bio-Oss/Collagen, Apaceram-AX, Refit, or autologous bone. Micro-computed tomography and histological analyses were conducted at 3 and 6 months postoperatively (Refit and autologous bone were not included at the 6-month time point due to their rapid absorption). Results: All materials demonstrated excellent biocompatibility and osteoconductivity. At 3 months, Bio-Oss and Apaceram-AX exhibited significantly greater volumes of formation than the other materials, with Bio-Oss having a marginally higher amount. However, this outcome was reversed at 6 months, with no significant difference between the 2 materials at either time point. Apaceram-AX displayed notably slower bioresorption and the largest quantity of residual material at both time points. In contrast, Refit had significantly greater bioresorption, with complete resorption and rapid maturation involving cortical bone formation at the crest at 3 months, Refit demonstrated the highest mineralized tissue and osteoid occupancy after 3 months, albeit without statistical significance. Conclusions: Overall, the materials demonstrated varying post-implantation behaviors in vivo. Thus, in a clinical setting, both the properties of these materials and the specific conditions of the defects needing reinforcement should be considered to identify the most suitable material.

EFFECT OF HYDROXYLAPATITE SYNTHETIC GRAFT AND GUIDED TISSUE REGENERATION TECHNIQUE ON HEALING OF EXTRACTION SOCKET IN MONGREL DOGS (성견에서 발치 직후 Hydroxylapatite의 축조와 조직 유도 재생술이 발치와의 골조직 치유에 미치는 영향)

  • Han, Dong-Hoo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.187-200
    • /
    • 1996
  • After loss of tooth, initial healing process is critical to preserve residual alveolar process. This study was conducted to compare the effect of hydroxylapatite particle synthetic graft and guided tissue regeneration procedure on healing of extraction wounds in 5 mongrel dogs. To investigate the maturity of bone and velocity of bone heating, bone-labeled tracers were used. After 16 weeks healing period, dogs were sacrificed. The specimens were treated with Villanueva bone stain. Fluorescence microscopy and polarized microscopy were performed to exam the pattern of bone formation in the extraction socket. The results were following ; 1. Pattern of bone regeneration in the group of hydroxylapatie graft and the group of membrane protection after hydroxylapatite graft was following ; bone regeneration was slow, regenerated bone was immature, and thickness of cortical layer was thin compare to that of untreated control group. 2. Cortical layers in membrane protected group were somewhat thicker but less condense to that of untreated control group. 3. Infiltration of inflammation cells were found in the groups using hydroxylapatite graft and membrane. We concluded that grafting of replamineform hydroxylapatite particles into the extraction socket delayed healing of the wound and disturbed the formation of cortical bone at the roof of extraction socket. The placement of expanded polytetrafluoroethylene membranes on the extraction socket promotes the bone regeneration. But newly formed bone in cortical layer consists of the cortico-cancellous bone in comparison with the cortical bone of the control group.

  • PDF

EFFECT OF TUMOR NECROSIS FACTOR-α ON THE BONE METABOLISM (Tumor Necrosis Factor-α가 골대사에 미치는 영향)

  • Kim, Sang-Sub;Lee, Su-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.187-199
    • /
    • 1999
  • Bone remodeling is characterized by the continuing processes of osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Bone metabolism is tightly regulated at the local level by networks of hormones, cytokines, and other factors. In pathological conditions of bone remodeling, including osteoporosis and periodontal diseases, inflammatory cytokines and local mediators are responsible for enhancement of osteoclast resorption and inhibition of repair at the sites of bone resorption. TNF-${\alpha}$ is a pleiotropic hormone with actions on the differentiation, growth, and functional activities of normal and malignant cells from numerous tissues. TNF-${\alpha}$ has been proposed as a local mediator of the control of bone turnover in situations of chronic inflammation, and it has been assumed that the local source of TNF-${\alpha}$ is the monocyte in the adjacent bone marrow or the local circulation. TNF-${\alpha}$ is a potent inducer of bone resorption. TNF-${\alpha}$ is known to induce the activation of apoptotic signaling pathway, which leads to the apoptosis of bone cells. We demonstrated that treatment of murine osteoblastic MC3T3E1 cells with TNF-${\alpha}$ decreases proliferation as well as alkaline phosphatase (ALP) activity in a dose depenent manner. In addition, TNF-${\alpha}$ increases osteoclast-like cell formation in $1{\alpha}$, 25(OH)2D3 or PGE2-treated bone marrow cell culture. When cells were cultured in TNF-${\alpha}$ free ${\alpha}$-MEM, this inhibitory effect of ALP activity was reversible up to 10 ng/ml TNF-${\alpha}$, in contrast, at the 20 ng/ml TNF-${\alpha}$, irreversible. In this concentration, TNF-${\alpha}$ may induce apoptosis in MC3T3E1 cells. In this study, TNF-${\alpha}$ induces apoptosis resulting in chromosomal DNA fragmentation, preceded by JNK/SAPKs and caspase-3 activation. Our present results show that JNK/SAPKs and caspase-3 are activated by TNF-${\alpha}$, suggesting that the JNK/SAPKs and caspase-3 participate in the bone resorption, associated with apoptosis.

  • PDF

The Effect of Demineralized Freeze - Dried Bone Allograft in Guided Bone Regeneration on Supra - Alveolar Peri - Implant Defects in Dogs (성견의 치조 연상 임플란트주위 결손부에서의 탈회냉동건조골과 e-PTEE막의 효과)

  • Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.57-74
    • /
    • 2001
  • The purpose of this study was to evaluate the adjunctive combined effect of demineralized freeze-dried bone allograft(DFDB) in guided bone regeneration on supra-alveo-lar peri-implant defect. Supra-alveolar perio-implant defects, 3mm in height, each including 4 IMZ titanium plasma-sprayed implants were surgically created in two mongrel dogs. Subsequently, the defects were treated with 1 of the following 3 modalities: Control) no membrane or graft application, Group1) DFDB application, Group2) guided bone regeneration using an expanded polytetra-fluoroethylene membrane, Group3) guided bone regeneration using membrane and DFDB. After a healing period of 12-week, the animals were sacrificed, tissue blocks were harvested and prepared for histological analysis. Histologic examination were as follows; 1. New bon formation was minimal in control and Group 1, but considerable new bone formation was observed in Group 2 and Group 3. 2. There was no osteointegration at the implant-bone interface in the high-polished area of group2 and Group 3. 3. In fluorescent microscopic examination, remodeling of new bone was most active during week 4 and week 8. There was no significant difference in remodeling rate between group 2 and group 3. 4. DFDB particles were observed, invested in a connective tissue matrix. Osteoblast activity in the area was minimal. The results suggest that guided bone regeneration shows promising results in supra-alveolar peri-implant defects during the 12 week healing period although it has a limited potential in promoting alveolar bone regeneration in the high-polished area. There seems to be no significant adjunctive effect when DFDB is combined with GBR.

  • PDF

Study of bone healing pattern in extraction socket after application of demineralized dentin matrix material (자가치아 뼈 이식재의 발치와내 이식 후 골 치유 양상에 관한 연구)

  • Chung, Jae-Ho;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.5
    • /
    • pp.365-374
    • /
    • 2011
  • Introduction: Research on dental bone graft material has been actively conducted. Recently, demineralized dentin matrix material has been developed and introduced. This study examined the effect of demineralized dentin matrix material on bone healing. Subjects and Methods: The patients who received no treatment after extraction were used as the control group and patients who underwent demineralized dentin matrix material application in the extraction socket after extraction were used as the experimental group. Panorama radiography was performed at the baseline and at 3.5 months after graft material placement and CT was taken at 3.5 months after graft material placement for a radiologic evaluation. Bony tissue specimens were collected from the alveolar crest in the middle of the extraction socket using a 2 mm trephine bur after 3.5 months for the histology and hostomorphometric study. Results: 1. On the panoramic view, a higher bone density was observed in the subject group. 2. On the panoramic view, the bone density increased significantly in the extraction socket, from the baseline to 3.5 months: a 7 and 10 gray-level scale was observed in the control and experimental group, respectively (P<0.05). 3. The CT view evaluation at 3.5 months revealed significantly higher bone density in the subject group than the control group (P<0.05). 4. The histological findings showed more active new bone and lamellar bone formation in the subject group. Dentin with osteoinduction ability and enamel with osteoconduction ability appeared. 5. On histomorphometric analysis, the subject group showed significantly more new bone, lamellar bone area and lower soft tissue area (P<0.05). The difference between the groups was significant (P<0.05). Conclusion: Bone healing was improved after the application of demineralized dentin matrix material and there was active new bone and lamellar bone formation.