• Title/Summary/Keyword: Bone collagen

Search Result 603, Processing Time 0.025 seconds

Effect of Hormone Replacement Therapy on the Change of Pyridinoline from Bone and Cartilage Collagen of Ovariectomized Rats (호르몬 투여가 난소를 절제한 흰쥐의 골단백질 성숙에 미치는 영향)

  • 김미향;유리나;하배진;김상애;고진복
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.475-479
    • /
    • 1997
  • A decrease in the circulating levels of estrogen, occuring as a consequence of post menopausal decline or from surgical ovariectomy, results in an accelerated loss of bone. Estrogen has been shown to stimulate lysyl oxidase activity, and the treatment with estrogen increased the pyridinium content of cortical bone. a trivalent mature cross-links collagen fibrils named pyridinoline, which is especially abundant in collagen of cartilage and bone, markedly increases with growth in humans and rats. The main aim of this study was to examine the increased bone loss caused by ovariectomy through monitoring the concentrations of the collagen and the pyridinium cross-links of collagen, pyridinoline. The ovariectomized rats, 4 weeks old, were divided at random into two or three groups of 5. Ovariectomies were carried out on both of the saline-treated group(OVX(NH)) and the estrogen-treated group(OVX(H)) using the dorsal approach and sham operations were performed on the sham-operated group(sham). They were maintained under identical conditions for 4 or 8 weeks and were allowed free access to food and water. it was observed that there was no significant difference between the control group and the sham-operated group, however, the control group had a higher content of collagen than the saline-treated group after 4 weeks and 8 weeks. Based on these results, iot is supposed that estrogen can enhance collagen synthesis and affects the pyridinoline formation in collagen fibrils through stimulating lysyl oxidase activity.

  • PDF

The Effect of Ascorbic Acid on the Changes in Amounts of Pyridinoline form Bone Collagen during In vitro Aging (In vitro Aging에 있어서 콜라겐 성숙가교의 변화에 대한 비타민 C의 영향)

  • 김미향
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.501-506
    • /
    • 1997
  • As pyridinoline is one of the predominant cross-lins in a mature collagen, pyridinoline formation may be an essential step during the growth process to obtain normal mechanical strength in collagen fibrils. However, the excess formation of pyridinoline in collagen will probably make the tissue stiffer, less soluble and less digestible by enzymes. We investigated the changes of pyridinoline of bone collagen and the role of ascforbic acid(AsA) on the formation of pyridinoline. The pyridinoline content of bone collagen significantly increased during incubation for 1~5 weeks at 37$^{\circ}C$ in vitro. The addition of AsA decreased pyridinoline to half the amount found in controls with 5 week incubation. When dehydroascorbic acid(DHA) and L-2, 3-diketogulonic acid (DKG), the oxidative products of AsA, were supplemented to bone collagen solution instead of AsA, the content of pyridinoline in bone collagen was about 80% or 70% that of controls, respectively. These results suggest that pyridinoline content decreases by the addition of AsA in vitro. Furthermore, it was shown that AsA in oxidized from also affected the formation of pyridinoline.

  • PDF

Bone Health and L-ascorbic acid in Postmenopausal Women (폐경 여성의 골 건강과 L-ascorbic acid)

  • Kim, Bokyung;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1142-1148
    • /
    • 2021
  • As the average human lifespan has been extended, there has been a lot of interest in the quality of life of women after menopause. It is known that the average age of menopause among Korean women is 49.7 years, and the post-menopausal life of a woman takes up more than one third of her life. L-ascorbic acid (AsA) is known to be involved in the synthesis and maturation of collagen, a bone constituent protein. The aim of this review is to discuss the potential of AsA in bone health in postmenopausal women. AsA plays an important role in collagen biosynthesis, and collagen is a protein constituting bone and is a necessary material for calcification of the bone matrix. Collagen crosslinking is necessary for the stabilization and elasticity of collagen fibers during growth and matruation of animals, but an excessive increase is likely to lead to further aging because the movement of intercellular nutrients or waste is suppressed. AsA acts as a reducing agent to stabilize the immature collagen crosslinking and suppress pyridinoline production, a mature crosslinking. Therefore, AsA participates in collagen biosynthesis and helps bone tissue health, while regulating the excessive maturation of collagen crosslinking, it is expected to play an important role in bone-related problems that may occur in postmenopausal women.

Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

  • Kim, Jwa-Young;Yang, Byoung-Eun;Ahn, Jin-Hee;Park, Sang O;Shim, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.539-546
    • /
    • 2014
  • PURPOSE. Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-$Gide^{(R)}$) using a rat calvarial defect model. MATERIALS AND METHODS. Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-$Gide^{(R)}$). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS. Bone regeneration was observed in the SF and Bio-$Gide^{(R)}$-treated groups to a greater extent than in the control group (mean volume of new bone was $5.49{\pm}1.48mm^3$ at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-$Gide^{(R)}$ samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks ($8.75{\pm}0.80$ vs. $8.47{\pm}0.75mm^3$, respectively, P=.592). CONCLUSION. SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.

The Effects of Bone Regeneration of the Dermal Collagen Matrix(AlloDerm®) Graft in the Rabbit Calvarium (가토의 두개골에 이식한 진피 아교기질(AlloDerm®)이 골 재생에 미치는 효과)

  • Park, Sang Woo;Lee, Kyung Suck;Kim, Jun Sik
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.335-342
    • /
    • 2005
  • This study was undertaken to investigate possibility of the allogenic type I collagen inducing osteoinduction or osteoconduction at critical sized bone defect in the rabbit. Twenty Newzealand white rabbit, weighted from 2.8 kg to 3.5 kg, were used in this study. The skull was exposed and two bony defects were created with diameter of 10 mm. Group I(n=10), the bony defects was grafted from the other side bone. Group II(n=10), the bony defects was grafted by the allogenic type I collagen with bone morphogenic protein(BMP). Group III(n=10), the bony defects was grafted by the allogenic type I collagen only. Group IV(n=10), the bony defects was lefted with no grafts. The grafted bones and allogenic type I collagen were investigated with radiologic densitometry, histologic analysis and immunohistochemistry after 12 weeks. No major difference was observed in the gross finding between Group I, II, III, but dura mater was exposed in bony defect,the Group IV. The radiologic study demonstrated more bony opacity in the Group I, but the other groups did not demonstrate a significant difference. In the histologic study, grafted bone edge was completely consolidated with original bone in group I and new bone ingrew into the grafted allogenic type I collagen(group II, III),but there is no bone regeneration from the original bony edge in the group IV. The percent of the new bone formation by cross-sectional area was considered statistically significant at a p value of less than 0.05(p<0.05). In the immunohistochemistry study about BMP antibodies, the group IV demonstrated osteogenic activity in front of advancing original bone edge, in which the osteoblast stained strongly for BMP antibodies, but other group does not demonstrated any osteoblastic expression. There was no immunologic rejection. In conclusion, this results do not demonstrate that the allogenic type I collagen is useful for bone substitute, but the characters of the collagen, such as pliability, easy-handling, sponge-like structure, are useful in interpositional bone graft substitutes. The further evaluation of long term results about the resorption, immunologic tissue reaction, response of applied tissue growth factor to the allogenic collagen is needed.

Comparison of Human Bone Marrow Stromal Cells with Fibroblasts in Cell Proliferation and Collagen Synthesis (골수기질세포와 섬유아세포의 세포 증식과 교원질 합성능 비교)

  • Han, Seung-Kyu;Yoon, Tae-Hwan;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.343-346
    • /
    • 2005
  • It has been established that a graft of fibroblasts is able to improve wound healing. However, there has been no research on the effect of a graft of bone marrow stromal cells on wound healing. The wound healing process requires cell proliferation and production of extracellular matrix and various growth factors. The purpose of this study was to compare the abilities of human fibroblasts and bone marrow stromal cells, which contains mesenchymal stem cells, to proliferate and to produce collagen. Human bone marrow stromal cells and fibroblasts were isolated from bone marrow and dermis of the same patients and grown in culture respectively. Cell proliferation and production of type I collagen by human bone marrow stromal cells and dermal fibroblasts were examined by MTT method and by ELISA of cell culture media on day 1, 3, and 5 days post-incubating. The human bone marrow stromal cells showed 11-17% higher cell proliferation than fibroblasts at each time interval. The levels of type I collagen in the human bone marrow stromal cell group was also significantly higher than those in the fibroblast group. The results indicate that the grafts of human bone marrow stromal cells can show more promising effect than that of fibroblasts for healing of chronic wounds.

Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast

  • Seol, Ja young;Yoon, Ji Young;Jeong, Hee Sun;Joo, Nami;Choi, Soon Young
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.237-243
    • /
    • 2016
  • Many researchers revealed that collagen contribute to maintaining the skin’s elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity.

Combined effects of a chemically cross-linked porcine collagen membrane and highly soluble biphasic calcium phosphate on localized bone regeneration

  • Kim, You-Kyoung;An, Yin-Zhe;Cha, Jae-Kook;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • The Journal of the Korean dental association
    • /
    • v.56 no.12
    • /
    • pp.667-685
    • /
    • 2018
  • Objectives: Aim of this study was to evaluate bone regenerative efficacy of a chemically cross-linked porcine collagen membrane (CM) when used in combination with highly soluble biphasic calcium phosphate (BCP). Materials and methods: Physiochemical properties of the experimental collagen membrane were analyzed. Four circumferential defects with diameter of 8 mm were created in each calvarium of New Zealand white rabbits (n = 10). Defects were randomly allocated to one of following 4 groups: 1) BCP-CM (BCP (20% hydroxyapatite/80% ${\beta}$-tricalcium phosphate) covered with the prepared collagen membrane), 2) BCP (only BCP used), 3) CM (only the prepared collagen membrane used), and 4) C (control; only blood clot). After 2 weeks (n = 5) and 8 weeks (n = 5), histologic and histomorphometric analyses were performed. Results: The experimental collagen membrane exhibited dense and compact structure, relatively high tensile strength and lower degradability. Histologic analyses revealed that new bone increased rapidly at 2 weeks, while defect was preserved at 8 weeks. Histomorphometric analyses revealed that the new bone areas increased in the BCP-grafted groups over 8 weeks, with BCP-CM exhibiting greater total augmented area than that of BCP group both at 2 weeks ($27.12{\pm}3.99$ versus $21.97{\pm}2.27mm^2$) and 8 weeks ($25.75{\pm}1.82$ versus $22.48{\pm}1.10mm^2$) (P < 0.05). Conclusions: The experimental collagen membrane successfully preserved localized defect for 8 weeks despite early rapid resorption of BCP. Within the study limitations, combined use of the chemically cross-linked porcine collagen membrane and highly soluble BCP aided localized bone regeneration.

  • PDF

Vertical bone augmentation using collagenated or non-collagenated bone substitute materials with or without recombinant human bone morphogenetic protein-2 in a rabbit calvarial model

  • Hyun-Chang Lim;Kyeong-Won Paeng;Ui-Won Jung;Goran I. Benic
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.6
    • /
    • pp.429-443
    • /
    • 2023
  • Purpose: The aim of this study was to determine 1) the bone-regenerative effect of porcine bone block materials with or without collagen matrix incorporation, 2) the effect of a collagen barrier, and 3) the effect of adding recombinant human bone morphogenetic protein-2 (rhBMP-2) to the experimental groups. Methods: Four treatment modalities were applied to rabbit calvaria: 1) deproteinized bovine bone mineral blocks (DBBM), 2) porcine bone blocks with collagen matrix incorporation (PBC), 3) porcine bone blocks alone without collagen matrix incorporation (PB), and 4) PBC blocks covered by a collagen membrane (PBC+M). The experiments were repeated with the addition of rhBMP-2. The animals were sacrificed after either 2 or 12 weeks of healing. Micro-computed tomography (micro-CT), histologic, and histomorphometric analyses were performed. Results: Micro-CT indicated adequate volume stability in all block materials. Histologically, the addition of rhBMP-2 increased the amount of newly formed bone (NB) in all the blocks. At 2 weeks, minimal differences were noted among the NB of groups with or without rhBMP-2. At 12 weeks, the PBC+M group with rhBMP-2 presented the greatest NB (P<0.05 vs. the DBBM group with rhBMP-2), and the PBC and PB groups had greater NB than the DBBM group (P>0.05 without rhBMP-2, P<0.05 with rhBMP-2). Conclusions: The addition of rhBMP-2 enhanced NB formation in vertical augmentation using bone blocks, and a collagen barrier may augment the effect of rhBMP-2.

EXPRESSION OF TYPE I, TYPE II COLLAGEN ON DISTRACTION OSTEOGENESIS IN THE RABBIT MANDIBLE (가토 하악골에서 신연 골형성술시 제 I형 및 II형 교원질의 발현)

  • Kang, Dae-Sil;Jee, Yu-Jin;Song, Hyun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.261-270
    • /
    • 2004
  • The purpose of this experiment was to examine the histological changes and the pattern of expression of type I, II collagen in the elongated area by distraction osteogenesis in the rabbit mandible. Sixteen rabbits weighing 2.5kg-3kg were used for this experiment. Experimental group was distracted at the rate of 0.7mm, twice/day for 7days, and control group was only osteotomized. After 5 days latency, osteotomic site is distracted for 7days. Consolidation period is 28days. The animal was sacrificed at the 3rd, 7th, 14th, 28th day after the operation. The distracted bone was examined by histological analysis and RT-PCR analysis. The results were summarized as follows: 1. Experimental group was observed that the gaps between the distracted bone edges were occupied by new bone. 2. Expression of Type I collagen were detected throughout the experiment in both groups and Expression of Type I collagen were markedly increased during distraction and consolidation period in experimental group than control group. 3. Expression of Type II collagen were detected throughout the experiment in both groups and expression of Type II collagen were maintained at high level during distraction and consolidation period in experimental group than control group. From these results, in contrast to type II collagen, type I collagen seemed to be more expressed by mechanical stimuli during distraction and consolidation period. The predominent mechanism of new bone formation in the distraction gap was intramembranous bone formation, but some of the regenerated bone was formed by endochondral ossification.