• Title/Summary/Keyword: Bone Substitute

Search Result 171, Processing Time 0.023 seconds

Effects of Safflower Seed Extracts and Bovine Bone on Regeneration of Bone Defects in Mongrel Dogs (홍화씨 추출물 및 우골유도합성골이 성견골 결손부 재생에 미치는 영향)

  • Seo, Jae-Jin;Kim, Tak;Pi, Sung-Hee;Yun, Gi-Yun;Yu, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.553-569
    • /
    • 2000
  • Many natural medicines have been studied for their capacity and effects of antibacterial, anti-inflammatory and regenerative potential in periodontal tissues. Safflower seed has been traditionally used as a drug for treatment of bone fracture in oriental medicine. The purpose of the present study was to compare the effects of safflower seed extract and bone substitute on bone formation and regeneration in artificial defects in mongrel dogs. The bony defects were made with round bur at mandible and tibia. Extracts of safflower seed and bovine bone were placed directly at each defect for experimental group, and the defect of control group was sutured without any other treatment. Experimental animals were sacrificed at 8 weeks. And then histopathologic reading and histomorphometric study was done. There was not significant differences between control and experimental groups in osteoclastic activity and infiltration of inflammatory cells. However, new capillary proliferation, fibrosis and new bone formation were prominent in safflower seed extract group. The mandibular defects of safflower seed extract group were healed with dense connective and bony tissues, and endochondral bone formation was observed in tibial defect of safflower seed extract group only. New bone area of safflower seed extract group was more significantly increased than that of control and that of bone substitute group. These results indicate that direct local application of safflower seed extracts on bony defects seems to reduces the early inflammatory response and to promotes the bone regeneration.

  • PDF

Local ridge augmentation using a composite of bone substitute and collagen membrane at peri-implant dehiscence defects: a clinical, radiographic and histological analyses. (성견에서 차단막/골이식재 복합체를 이용한 임플란트 주위 골유도재생 효과: 임상적, 방사선학적, 조직학적 평가)

  • Song, Young Woo;Yoon, So-Ra;Cha, Jae-Kook;Lee, Jung-Seok;Choi, Seong-Ho;Jung, Ui-Won
    • The Journal of the Korean dental association
    • /
    • v.55 no.10
    • /
    • pp.676-687
    • /
    • 2017
  • Objectives : The aim of this study was to evaluate the effects of a composite of bone substitute and collagen barrier membrane (bone patch) for local ridge augmentation at peri-implant dehiscence defects on the clinical efficacy and positional stability in dogs. Materials and methods : Implant placement and ridge augmentation procedure were performed at surgically created peri-implant dehiscence defects in canine mandible (n=6). Four treatment modalities were randomly applied: i) bone patch group, ii) Guided bone regeneration (GBR) without pin fixation group (bone graft and collagen membrane), iii) GBR with pin fixation group, and iv) negative control group. After 12 weeks, clinical, micro-CT and histological analyses were performed. Results : Histologic analysis showed that bone patch group had similar results to GBR group and GBR with fixation group in terms of new bone formation. Micro-CT analysis revealed similar results to histologic analysis in terms of total volume maintenance. Operating time was shorter in bone patch group compared to GBR group and GBR with fixation groups. Conclusions : GBR using bone patch could simplify the ridge augmentation procedure with reduced operating time and equivalent biological performance compared to the conventional procedure.

  • PDF

Biocompatibility and Bone Conductivity of Porous Calcium Metaphosphate Blocks (생분해성 다공질 Calcium Metaphosphate 블록의 조직적합성에 관한 연구)

  • Lee, Yong-Moo;Kim, Seok-Young;Shin, Seung-Yun;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.559-568
    • /
    • 1998
  • direct bone apposition during bone remodelling. To address these problem, we developed a new ceramic, calcium metaphosphate(CMP), and report herein the biologic response to CMP in subcutaneous tissue, muscle and bone. Porous CMP blocks were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$. Macroporous scaffolds were made using a polyurethane sponge method. CMP block possesses a macroporous structure with approximate pore size range of 0.3-1mm. CMP blocks were implanted in 8mm sized calvarial defect, subcutaneous tissue and muscle of 6 Newzealand White rabbits and histologic observation were performed at 4 and 6 weeks later. CMP blocks in subcutaneous tissue and muscle were well adapted without any adverse tissue reaction and resorbed slowly and spontaneously. Histologic observation of calvarial defect at 4 and 6 weeks revealed that CMP matrix were mingled with and directly apposed to new bone without any intervention of fibrous connective tissue. CMP blocks didn't show any adverse tissue reaction and resorbed spontaneously also in calvarial defect. This result revealed that CMP had a high affinity for bone and was very biocompatible. From this preliminary result, it was suggested that CMP was a promising ceramic as a bone substitute and tissue engineering scaffold for bone formation.

  • PDF

Treatment concepts for the posterior maxilla and mandible: short implants versus long implants in augmented bone

  • Thoma, Daniel Stefan;Cha, Jae-Kook;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.2-12
    • /
    • 2017
  • The aim of this narrative review is to describe treatment options for the posterior regions of the mandible and the maxilla, comparing short implants vs. longer implants in an augmented bone. The dental literature was screened for treatment options enabling the placement of dental implants in posterior sites with a reduced vertical bone height in the maxilla and the mandible. Short dental implants have been increasingly used recently, providing a number of advantages including reduced patient morbidity, shorter treatment time, and lower costs. In the posterior maxilla, sinus elevation procedures were for long considered to be the gold standard using various bone substitute materials and rendering high implant survival rates. More recently, implants were even placed without any further use of bone substitute materials, but the long-term outcomes have yet to be documented. Vertical bone augmentation procedures in the mandible require a relatively high level of surgical skill and allow the placement of standard-length dental implants by the use of autogenous bone blocks. Both treatment options, short dental implants, and standard-length implants in combination with vertical bone augmentation procedures, appear to result in predictable outcomes in terms of implant survival rates. According to recent clinical studies comparing the therapeutic options of short implants vs. long implants in augmented bone, the use of short dental implants leads to a number of advantages for the patients and the clinician.

Natural bioceramics: our experience with changing perspectives in the reconstruction of maxillofacial skeleton

  • Kattimani, Vivekanand Sabanna;Lingamaneni, Krishna Prasad
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Objectives: Various bone graft substitute materials are used to enhance bone regeneration in the maxillofacial skeleton. In the recent past, synthetic graft materials have been produced using various synthetic and natural calcium precursors. Very recently, eggshell-derived hydroxyapatite (EHA) has been evaluated as a synthetic bone graft substitute. To assess bone regeneration using EHA in cystic and/or apicectomy defects of the jaws through clinical and radiographic evaluations. Materials and Methods: A total of 20 patients were enrolled in the study protocol (CTRI/2014/12/005340) and were followed up at 4, 8, 12, and 24 weeks to assess the amount of osseous fill through digital radiographs/cone-beam computed tomography along with clinical parameters and complications. Wilcoxon matched pairs test, means, percentages and standard deviations were used for the statistical analysis. Results: The sizes of the lesions in the study ranged from 1 to 4 cm and involved one to four teeth. The study showed significant changes in the formation of bone, the merging of material and the surgical site margins from the first week to the first month in all patients (age range, 15-50 years) irrespective of the size of the lesions and the number of teeth involved. Bone formation was statistically significant from the fourth to the eighth week, and the trabecular pattern was observed by the end of 12 weeks with uneventful wound healing. Conclusion: EHA showed enhancement of bone regeneration, and healing was complete by the end of 12 weeks with a trabecular pattern in all patients irrespective of the size of the lesion involved. The study showed enhancement of bone regeneration in the early bone formative stage within 12 weeks after grafting. EHA is cost effective and production is environment friendly with no disease transfer risks. Thus, natural bioceramics will play an important role in the reduction of costs involved in grafting and reconstruction.

Effect of Bioactive Glass Addition to the TTCP/DCPA Based Injectable Bone Substitute for Improved Biocompatibility

  • Sadiasa, Alexander;Sarkar, Swapan Kumar;Franco, Rose Ann;Yang, Hun-Mo;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.52.1-52.1
    • /
    • 2011
  • In this work, the effect of the addition of bioactive glass in the biocompatibility and mechanical behavior of conventional TTCP/DCPA based bone cement were investigated. The cement was initially modified with chitosan and HPMC which cross-linked with citric acid to improved mechanical properties.The injectable bone substitutes were further modified by adding varying amounts of bioactive glass (0%, 10%, 20% and 30%) and its effects on the biocompatibility of the material were studied. Afterbio-glass powders were mixed with the optimized composition for HPMC and citric acid content,the IBS was incubated at $37^{\circ}C$ at different time intervals and showed progressive formation of HAp with increasing time. Mechanical properties like Vickers hardness and compressive strength were found to increase with the increasing amount of bioactive glass addition and that setting time was shortened. The fabricated IBS morphologies were further characterized using SEM. MTT assay was performed to check the cell cytotoxicity and cell proliferation for 1, 3 and 5 days. Cell morphology, adhesion and proliferation behavior of cell in the IBS by culturing MG-63 cells on the IBS for 20, 60 and 90 mins and 1, 3 and 5 days was also investigated. All the results showed increasing biocompatibility as the bioglass content increased. MTT results found the materials to be cytocompatible and SEM images showed that cells attached and proliferated successfully.

  • PDF

THE EFFECT OF THE BIORESORBABLE COLLAGEN MEMBRANE ON THE REGENERATION OF BONE DEFECT BY USING THE MIXTURE OF AUTOGRAFT AND XENOGRAFT BONE

  • Lee Jung-Min;Kim Yung-Soo;Kim Chang-Whe;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.325-341
    • /
    • 2003
  • Statement of problem: In cases where bony defects were present, guided bone regenerations have been performed to aid the placement of implants. Nowadays, the accepted concept is to isolate bone from soft tissue by using barrier membranes to allow room for generation of new bone. Nonresorbable membranes have been used extensively since the 1980's. However, this material has exhibited major shortcomings. To overcome these faults, efforts were made to develop resorbable membranes. Guided bone regenerations utilizing resorbable membranes were tried by a number of clinicians. $Bio-Gide^{(R)}$ is such a bioresorbable collagen that is easy to use and has shown fine clinical results. Purpose: The aim of this study was to evaluate the histological results of guided bone regenerations performed using resorbable collagen membrane($Bio-Gide^{(R)}$) with autogenous bone, bovine drived xenograft and combination of the two. Surface morphology and chemical composition was analyzed to understand the physical and chemical characteristics of bioresorbable collagen membrane and their effects on guided bone regeneration. Material and methods: Bioresorbable collagen membrane ($Bio-Gide^{(R)}$), Xenograft Bone(Bio-Oss), Two healthy, adult mongrel dogs were used. Results : 1. Bioresorbable collagen membrane is pure collagen containing large amounts of Glysine, Alanine, Proline and Hydroxyproline. 2. Bioresorbable collagen membrane is a membrane with collagen fibers arranged more loosely and porously compared to the inner surface of canine mucosa: This allows for easier attachment by bone-forming cells. Blood can seep into these spaces between fibers and form clots that help stabilize the membrane. The result is improved healing. 3. Bioresorbable collagen membrane has a bilayered structure: The side to come in contact with soft tissue is smooth and compact. This prevents soft tissue penetration into bony defects. As the side in contact with bone is rough and porous, it serves as a stabilizing structure for bone regeneration by allowing attachment of bone-forming cells. 4. Regardless of whether a membrane had been used or not, the group with autogenous bone and $Bio-Oss^{(R)}$ filling showed the greatest amount of bone fill inside a hole, followed by the group with autogenous bone filling, the group with blood and the group with $Bio-Oss^{(R)}$ Filling in order. 5. When a membrane was inserted, regardless of the type of bone substitute used, a lesser amount of resorption occurred compared to when a membrane was not inserted. 6. The border between bone substitute and surrounding bone was the most indistinct with the group with autogenous bone filling, followed by the group with autogenous bone and $Bio-Oss^{(R)}$ filling, the group with blood, and the group with $Bio-Oss^{(R)}$ filling. 7. Three months after surgery, $Bio-Gide^{(R)}$ and $Bio-Oss^{(R)}$ were distinguishable. Conclusion: The best results were obtained with the group with autogenous bone and $Bio-Oss^{(R)}$ filling used in conjunction with a membrane.

Octacalcium phosphate, a promising bone substitute material: a narrative review

  • Jooseong Kim;Sukyoung Kim;Inhwan Song
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.1
    • /
    • pp.4-12
    • /
    • 2024
  • Biomaterials have been used to supplement and restore function and structure by replacing or restoring parts of damaged tissues and organs. In ancient times, the medical use of biomaterials was limited owing to infection during surgery and poor surgical techniques. However, in modern times, the medical applications of biomaterials are diversifying owing to great developments in material science and medical technology. In this paper, we introduce biomaterials, focusing on calcium phosphate ceramics, including octacalcium phosphate, which has recently attracted attention as a bone graft material.

8 Years Follow-up of Complications after Maxillary Cyst Enucleation with Xenograft: Case Report (상악골낭종 적출술 후 이식된 이종골지지체의 술 후 8년 감염 증례)

  • Lee, Eun-Young;Kim, Kyoung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.425-429
    • /
    • 2011
  • Bone grafts are becoming increasingly common in oral and maxillofacial surgery to improve bone healing procedures. Bovine bone as a xenograft is a representative osteoconductor and space filler; however, sometimes complications, such as infection and wound dehiscence are encountered with its use. We report the result of an eight-year follow-up of a xenograft case and processing methods of inorganic bovine bone along with a review of the literature. Xenograft ($LUBBOC^{(R)}$) was used in a cyst enucleation site of the maxilla, as a bone substitute and space filler. Inflammation and infection were defined several times as lack of osseous contact between the graft and host bone, caused by remodeling failure over an eight-year period. Pathologic findings of the xenograft revealed dead bony trabeculae with inflamed fibrous tissue and actinomycosis.