• Title/Summary/Keyword: Bone Substitute

Search Result 171, Processing Time 0.027 seconds

Can denosumab be a substitute, competitor, or complement to bisphosphonates?

  • Kim, Su Young;Ok, Hwoe Gyeong;Birkenmaier, Christof;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.30 no.2
    • /
    • pp.86-92
    • /
    • 2017
  • Osteoblasts, originating from mesenchymal cells, make the receptor activator of the nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in order to control differentiation of activated osteoclasts, originating from hematopoietic stem cells. When the RANKL binds to the RANK of the pre-osteoclasts or mature osteoclasts, bone resorption increases. On the contrary, when OPG binds to the RANK, bone resorption decreases. Denosumab (AMG 162), like OPG (a decoy receptor), binds to the RANKL, and reduces binding between the RANK and the RANKL resulting in inhibition of osteoclastogenesis and reduction of bone resorption. Bisphosphonates (BPs), which bind to the bone mineral and occupy the site of resorption performed by activated osteoclasts, are still the drugs of choice to prevent and treat osteoporosis. The merits of denosumab are reversibility targeting the RANKL, lack of adverse gastrointestinal events, improved adherence due to convenient biannual subcutaneous administration, and potential use with impaired renal function. The known adverse reactions are musculoskeletal pain, increased infections with adverse dermatologic reactions, osteonecrosis of the jaw, hypersensitivity reaction, and hypocalcemia. Treatment with 60 mg of denosumab reduces the bone resorption marker, serum type 1 C-telopeptide, by 3 days, with maximum reduction occurring by 1 month. The mean time to maximum denosumab concentration is 10 days with a mean half-life of 25.4 days. In conclusion, the convenient biannual subcutaneous administration of 60 mg of denosumab can be considered as a first-line treatment for osteoporosis in cases of low compliance with BPs due to gastrointestinal trouble and impaired renal function.

Combined effects of a chemically cross-linked porcine collagen membrane and highly soluble biphasic calcium phosphate on localized bone regeneration

  • Kim, You-Kyoung;An, Yin-Zhe;Cha, Jae-Kook;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • The Journal of the Korean dental association
    • /
    • v.56 no.12
    • /
    • pp.667-685
    • /
    • 2018
  • Objectives: Aim of this study was to evaluate bone regenerative efficacy of a chemically cross-linked porcine collagen membrane (CM) when used in combination with highly soluble biphasic calcium phosphate (BCP). Materials and methods: Physiochemical properties of the experimental collagen membrane were analyzed. Four circumferential defects with diameter of 8 mm were created in each calvarium of New Zealand white rabbits (n = 10). Defects were randomly allocated to one of following 4 groups: 1) BCP-CM (BCP (20% hydroxyapatite/80% ${\beta}$-tricalcium phosphate) covered with the prepared collagen membrane), 2) BCP (only BCP used), 3) CM (only the prepared collagen membrane used), and 4) C (control; only blood clot). After 2 weeks (n = 5) and 8 weeks (n = 5), histologic and histomorphometric analyses were performed. Results: The experimental collagen membrane exhibited dense and compact structure, relatively high tensile strength and lower degradability. Histologic analyses revealed that new bone increased rapidly at 2 weeks, while defect was preserved at 8 weeks. Histomorphometric analyses revealed that the new bone areas increased in the BCP-grafted groups over 8 weeks, with BCP-CM exhibiting greater total augmented area than that of BCP group both at 2 weeks ($27.12{\pm}3.99$ versus $21.97{\pm}2.27mm^2$) and 8 weeks ($25.75{\pm}1.82$ versus $22.48{\pm}1.10mm^2$) (P < 0.05). Conclusions: The experimental collagen membrane successfully preserved localized defect for 8 weeks despite early rapid resorption of BCP. Within the study limitations, combined use of the chemically cross-linked porcine collagen membrane and highly soluble BCP aided localized bone regeneration.

  • PDF

Comparison of stress distribution in bone and implant-supported dental prosthesis with zirconia and titanium implants: a 3-dimensional finite element analysis (지르코니아 및 티타늄 임플란트를 사용한 지지골 및 임플란트 유지 수복물의 응력 분포 비교: 3차원 유한 요소 분석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.348-354
    • /
    • 2020
  • Purpose: Zirconia is differentiated from other ceramics because of its high resistance to corrosion and wear, excellent flexural strength (900~1400 MPa), and high hardness. Dental zirconia with proven mechanical/biological stability is suitable for the manufacture of implants. However, there are limited in vivo studies evaluating stress distribution in zirconia compared with that in titanium implants and studies analyzing finite elements. This study was conducted to evaluate the stress distribution of the supporting bone surrounding zirconia and titanium implants using the finite element analysis method. Methods: For finite element analysis, a single implant-supported restoration was designed. Using a universal analysis program, eight occlusal points were set in the direction of the occlusal long axis. The occlusal load was simulated at 700 N. Results: The zirconia implant (47.7 MPa) von Mises stress decreased by 5.3% in the upper cortical bone compared with the titanium implant (50.2 MPa) von Mises stress. Similarly, the zirconia implant (20.8 MPa) von Mises stress decreased by almost 4% in the cancellous bone compared with the titanium implant (21.7 MPa) von Mises stress. The principal stress in the cortical and cancellous bone exhibited a similar propensity to von Mises stress. Conclusion: In the supporting bone, the zirconia implant is able to reduce bone resorption caused by mechanically transferred stress. It is believed that the zirconia implant can be a potential substitute for the titanium implant by reinforcing aesthetic characteristics and improving stress distribution.

Degradation rate of several types of Calcium Polyphosphate;Long term results (다양한 형태의 다공질 Calcium Polyphosphate의 생분해성에 관한 장기적인 연구)

  • Yang, S.M.;Seol, Y.J.;Kye, S.B.;Lee, I.K.;Lee, C.W.;Kim, S.Y.;Lee, Yong-Mu;Ku, Y.;Han, S.B.;Chung, C.P.;Choi, S.M.;Rhyu, I.C.
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.2
    • /
    • pp.301-310
    • /
    • 2003
  • The purpose of this study is to evaluate the biocompatibility and the biorsorbability of several types of calcium polyphosphate made through change of manufacturing process for 12 month. To solve limitation of calcium phosphate, we developed a new ceramic, Calcium Polyphosphate(CPP), and report the biologic response to CPP in extraction sites of beagle dog. Porous CPP blocks were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$ and then milled to produce CPP powder. CPP powder, CPP block, and CPP granules added with $Na_2O$ were implanted in extraction sockets and histologic observation were performed at 12 months later. Like 3 months results, histologic observation at 12 months revealed that CPP matrix were mingled with and directly apposed to new bone without any adverse tissue reaction, CPP powder show direct bony contact, but new bone formation and fibrous tissue encapsulation showed in CPP block. 10% $Na_2O$ CPP granules show more inflammatory cells infiltration around graft materials compared at 3 month, but 15% $Na_2O$ CPP granules show less. This result revealed that regardless of addition of $Na_2O$, CPP had a high affinity for bone and had been resorbed slowly. From this results, it was suggested that CPP is promising ceramic as a bone substitute and addition of $Na_2O$ help biodegradation but optimal concentration of $Na_2O$ and other additive component to increase degradation rate should be determined in further study.

Effect of Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate in human intrabony defects (성인 치조골 내 결손부에서 Silicon contained Coralline Hydroxyapatite와 Beta Tricalcium Phosphate 합성제재의 효과에 대한 임상적 고찰)

  • Jang, Yong-Ju;Kim, Yong-Tae;Park, Jung-Chul;Kim, Chang-Sung;Choi, Seong-Ho;Kim, Chong-Kwan
    • The Journal of the Korean dental association
    • /
    • v.47 no.9
    • /
    • pp.596-606
    • /
    • 2009
  • Aim : The ultimate goal of periodontal treatment is regeneration of periodontium that have been lost due to inflammatory periodontal disease. Recently, Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate bone substitute have been introduced to achieve periodontal regeneration. The purpose of this study is to evaluate the effect of the Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate(BoneMedik-$DM^{(R)}$, Meta Biomed Co., Ltd. Oksan, Korea) on periodontal intrabony defects. Methods and materials : Clinical effects of Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate implantation in intrabony defects were evaluated 6 months after surgery in Sixty-one intrabony defects from Fourty-six patients with chronic periodontitis. Twenty-nine experimental defects in twenty-five patients received the Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate(test group), while Thirty-Three defects in twenty-one patients were treated with flap procedure only( control group). Comparative observation were done for preoperative and postoperative differences between control and experimental clinical parameters,-clinical attachment 10ss(CAL), probing depth(PD), bone probing depth(BPD), gingi val recession. Results : Postoperative improvements in CAL, PD, BPD were observed in both test and control groups(P<0.0l). However, the improvements in CAL, PD, BPD of the test group were significantly greater than control group. Conclusion : Healing of the both groups were uneventful during experimental periods. Use of Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate in a flap operation resulted in significantly greater improvements in CAL, PD, and BPD over flap operation alone. Silicon contained Coralline Hydroxyapatite and Beta Tricalcium Phosphate will be good bone substitute materials for treatment of intrabony defects.

  • PDF

Influence of wound closure on volume stability with the application of different GBR materials: an in vitro cone-beam computed tomographic study

  • Naenni, Nadja;Berner, Tanja;Waller, Tobias;Huesler, Juerg;Hammerle, Christoph Hans Franz;Thoma, Daniel Stefan
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.14-24
    • /
    • 2019
  • Purpose: To assess the influence of using different combinations of guided bone regeneration (GBR) materials on volume changes after wound closure at peri-implant dehiscence defects. Methods: In 5 pig mandibles, standardized bone defects were created and implants were centrally placed. The defects were augmented using different combinations of GBR materials: xenogeneic granulate and collagen membrane (group 1, n=10), xenogeneic granulate and alloplastic membrane (group 2, n=10), alloplastic granulates and alloplastic membrane (group 3, n=10). The horizontal thickness was assessed using cone-beam computed tomography before and after suturing. Measurements were performed at the implant shoulder (HT0) and at 1 mm (HT1) and 2mm (HT2) below. The data were statistically analysed using the Wilcoxon signed-rank test to evaluate within-group differences. Bonferroni correction was applied when calculating statistical significance between the groups. Results: The mean horizontal thickness before suturing was $2.55{\pm}0.53mm$ (group 1), $1.94{\pm}0.56mm$ (group 2), and $2.49{\pm}0.73mm$ (group 3). Post-suturing, the values were $1.47{\pm}0.31mm$ (group 1), $1.77{\pm}0.27mm$ (group 2), and $2.00{\pm}0.48mm$ (group 3). All groups demonstrated a loss of horizontal dimension. Intragroup changes exhibited significant differences in group 1 (P<0.001) and group 3 (P<0.01). Intergroup comparisons revealed statistically significant differences of the relative changes between groups 1 and 2 (P=0.033) and groups 1 and 3 (P=0.015). Conclusions: Volume change after wound closure was minimized by using an alloplastic membrane. The stability of the augmented horizontal thickness was most ensured by using this type of membrane irrespective of the bone substitute material used for membrane support.

THE CLINICAL STUDY OF IMPLANTATION OF TOOTHASH COMBINED WITH PLASTER OF PARIS;LONG-TERM FOLLOW UP STUDY (치아회분과 석고 혼합매식물 이식에 관한 임상적 연구;장기간 추적 연구)

  • Kim, Su-Gwan;Yeo, Hwan-Ho;Kim, Young-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.4
    • /
    • pp.771-777
    • /
    • 1996
  • This study was undertaken to access the effect of toothash combined with plaster of Paris in the filling of jaw defect and the substitution as new bone during the follow up period. We used the toothash and plaster after the cyst enucleation, the apicoectomy, the extraction of supenumerary tooth with ratio of 2 : 1 by weigh. 15 consecutive patients were evaluated retrospectively. Complications were swelling, perforation, infection and treated without problems using incision & drainage, aspiration, antibiotic treatment, 2ndary buccal flap. The follow-up period ranged from 28 to 35 months. Based on radiographic and clinical observation, it may be concluded that toothash and dental plaster of Paris($CaSo_4\;{\cdot}\;1/2H_2O$) are useful for bone substitute.

  • PDF

IMPLANTATION OF TOOTHASH COMBINED WITH PLASTER OF PARIS;CLINICAL APPLICATIONS (치아회분말과 치과용 연석고의 혼합매식술;임상적 적용)

  • Kim, Young-Kyun;Yeo, Hwan-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 1994
  • Toothash and plaster of Paris (Calcium sulfate) have been studied for bone substitute through experimental studies and clinical studies. Toothash is like resorbable hydroxyapatite. Plaster of Paris is resorbable and biocompatible. The toothash combined with plaster of Paris has the advantages of individual characteristics. The authors used this composite material in the jaw defect filling. In operation, we could manage this implant material easily and remove the dead space. During the followup period, this composite material was resorbed gradually and substituted as new-forming bone from the surrounding tissue. Complications were minor and treated completely without problems.

  • PDF

Preparation of Biodegradable Porous Calcium Phosphate Ceramics for Bone Fillers (뼈 충진재용 생분해성 다공질 Calcium Phosphate 세라믹스의 제조)

  • Lee, Joong-Hwan;Kim, Suk-Young
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.130-132
    • /
    • 1996
  • It is well known when porous calcium phosphate ceramics are used as a bone graft substitute, new tissues or blood vessels are grown into the porous implant due to their excellent biocompatibility. In this study, the ${\beta}$-crystalline form of calcium metaphosphate, $Ca(PO_{3})_{2}$ is prepared by the controlled thermolysis of monocalcium phosphate, $Ca(H_{2}PO_{4})_{2}$. The diameter of cylindrical pores formed during cooling was controlled by a holding time at the melting point of a monocalcium phosphate and by the change of a recrystallization temperature, to obtained the most appropriate size (about $200{\mu}m$) of pores. It was observed that the increasing holding time at the melting point of monocalcium phosphate results in the decreases of pore sizes.

  • PDF