• Title/Summary/Keyword: Bone Regeneration

Search Result 1,027, Processing Time 0.037 seconds

Effects of rrhGM-CSF on Morphology and Expression of PCNA in Regenerating Rat Liver (재생 중인 흰쥐 간의 형태학적 변화 및 PCNA 발현에 미치는 rrhGM-CSF의 영향)

  • Jeong, Jin-Ju;Heo, Si-Hyun;Kim, Ji-Hyun;Yoon, Kwang-Ho;Lee, Young-Jun;Han, Kyu-Boem;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • Liver regeneration is a result of highly coordinated proliferation of hepatocytes and nonparenchymal liver cells. Partial hepatectomy (PH) is the most often used stimulus to study liver regeneration because, compared with other methods that use hepatic toxins, it is not associated with the tissue injury and inflammation, and the initiation of the regenerative stimulus is precisely defined. Granulocyte macrophage-colony stimulating factor (GM-CSF), which is a cytokine able to regulate the proliferation and differentiation of epithelial cells, was first identified as the most potent mitogen for bone marrow. Particularly, rrhGM-CSF, which is highly glycosylated and sustained longer than any other types of GM-CSF in the blood circulation, was specifically produced from rice cell culture. In this experiment, effects of rrhGM-CSF administration were evaluated in the regenerating liver after 78% PH of rats. Morphological changes induced by PH were characterized by destroyed hepatocyte plate around the central vein and enlarged nuclear cytoplasmic ratio and increased hepatocytes with two nuclei. And then, proliferation of liver cells (parenchymal and nonparenchymal) and rearrangement of plates and lobules seemed to be carried out during liver regeneration. These alterations in the experimental group preceded those of the control. Since proliferating cell nuclear antigen (PCNA) is known to be a nuclear protein maximally elevated in the S phase of proliferating cells, the protein was used as a marker of liver regeneration after PH in rats. PCNA levels by western blot analysis and immunohistology were compared between the two groups. PCNA protein expression of two groups at 12 hr and 24 hr after injury showed similar pattern. The protein expression showed the peak at 3 days in both groups, however, the protein level of the experimental group was higher than that of the control. On immunohistochemical observations, the reaction product of PCNA was localized at the nuclei of proliferating cells and the positive reaction in experimental group at 3 days was clearly stronger than that in control group. The results by Western blotting and immunohistology for PCNA showed similar pattern in terms of the protein levels. In conclusion, rrhGM-CSF administration during liver regeneration after 78% PH accelerated breakdown and restoration of the hepatic plate and expression of PCNA. These results suggest that rrhGM-CSF might play an important role during liver regeneration in rats.

Resorbability and histological reaction of bioabsorbable membranes (수종의 흡수성 차단막의 생체 분해도와 조직학적 반응)

  • Suk, Hun-Joo;Kwon, Suk-Hoon;Kim, Chang-Sung;Choi, Seong-Ho;Jeon, Dong-Won;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.781-800
    • /
    • 2002
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. With the development of non-resorbable membrane, GTR has proved to be the representive technique of periodontal regeneration. However, due to various clinical problems of non-resorbable membrane, resorbable membrane was developed and it showed to be clinically effective. The newly developed Para-Dioxanone membrane has a characteristic of non-woven fabric structures which is different from the generally used membranes with structure of mesh form. In addition, Chitosan membrane has been developed to apply its adventage maximally in GTR. Although a number of different types of membranes had been clinically used, researches on absorption rate of membranes were inadequate and limited to subjective opinions. However, since long term period of resorption and space maintenance are required in implant or ridge augmentation, accurate verification of resorption rate is clinically important. In this study, we had implanted Resolut(R), Biomesh(R), Para-Dioxanone membrane and Chitosan membrane (Size : 4mm ${\times}$ 4mm) on dorsal side of Sprague Dawley rat, and sacrified them after 4 weeks, 8 weeks, 12 weeks respectively. Histologic observation was carried out, and the following results were obtained by calculating the objective resorption rate. 1. In case of Resolut(R), external resorption took place initially, followed by internal resorption. Surface area are 5.76${\pm}$2.37$mm^2$, 4.90${\pm}$l.06$mm^2$, 4.90${\pm}$0.98$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 31.6${\pm}$4.5%, 52.8${\pm}$9.4%, 56.4${\pm}$5.1% respectively. 2. Biomesh(R) showed a pattern of folding, relatively slow resorption rate with small size of membrane. Surface area are 3.62${\pm}$0.82$mm^2$, 3.63${\pm}$0.76$mm^2$, 4.07${\pm}$1.14$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 26.1${\pm}$5.8%, 30.9${\pm}$3.4%, 29.2${\pm}$3.6%, respectively. 3. Para-Dioxanone membrane was surrounded by fibrous conncetive tissue externally, and resorption took place internally and externally. Surface area are 5.96${\pm}$1.05$mm^2$, 4.77${\pm}$10.76$mm^2$, 3.86${\pm}$0.84$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 30.7${\pm}$5.1%, 53.3${\pm}$4.4%, 69.5${\pm}$3.1%, respectively. 4. Each fiber of Chitosan membrane was surrounded by connective tissue and showed external resorption pattern. It showed little invasion of inflammatory cells and excellent biocompatability. The resorption rate was relatively slow. Surface area are 6.01${\pm}$2.01$mm^2$, 5.49${\pm}$1.3$mm^2$, 5.06${\pm}$1.38$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 31.3${\pm}$3.6%, 38.4${\pm}$3.80%, 39.7${\pm}$5.6%, respectively. Consequently, Para-Dioxanone membrane and Chitosan membrane are found to be clinically effective for their excellent tissue reaction and biocompatibility. Futhermore, the advantage of bone regenerating ability as well as the relatively long resorption period of Chitosan membrane, it might be widely used in implant or ridge augmentation.

AN EXPERIMENTAL STUDY ON THE VASCULAR CHANGES OF RAT MOLAR PERIODONTAL LIGAMENT FOLLOWING ORTHODONTIC TOOTH MOVEMENT USING VASCULAR CORROSION CASTING METHOD (백서구치의 실험적 치아이동시 치근막 혈관변화에 관한 혈관주형법을 이용한 연구)

  • Lim, Yong-Kyu;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.37-62
    • /
    • 1994
  • This study was undertaken to investigate the three dimensional vascular changes of periodontal ligament following orthodontic tooth movement. Experimental tooth movement was carried out in 96 Sprague-Dawley rats with the weight of 250g. They were divided into four experimental groups (each 24 rats). The left maxillary first molar was moved mesially with 25g force in group I, and with 75g force in group II. Each three animals were sacrificed after 1, 6, 12, 24 hours, and 3, 7, 14, 21 days. In group III, 25g mesial force was applied for 3 days, and in group IV, 75g mesial force was applied for 3 days. Then the appliances were removed, and each three animals were sacrificed after 1, 6, 12, 24 hours, and 3, 7, 14, 21 days from removal of appliance. The contralateral molars were used for control group. Casting media was injected via left ventricle and polymerized in warm water. After corrosion of surrounding soft tissue, three dimensional vascular changes were examined using scanning electron microscopy. The findings of this study were as follows: 1. Pressure side of group I and II showed degenerative vascular changes such as vascular compression, reduction of vasculature, leakage of casting media. But, regenerative changes were dominant after 7 days of tooth movement. Although the degenerative vascular changes were more severe in group II, which was exposed to heavy force, the timing of these changes was not different between two groups. 2. Periodontal vasculature was reestablished by the growth of new capillaries and their differentiation and union from the remaining periodontal vessels and vessels of alveolar bone marrow. Although vascular regeneration was more rapid in group I, which was exposed to light force, the vasculature was not fully normalized in both groups even after 21 days. 3. There was no remarkable changes in tension side of group I and II, but looping of capillary, new capillary growth, dilation of vessels, redirection of vessels in the direction of tensile force were occurred. 4. In pressure side of group III and IV, in which appliance was removed after 3 days of orthodontic force, bone resorption was continued even after removal of appliance. Regeneration of vasculature was initiated after 1-6 hours, and it was more rapid in group III than group IV. In both groups, the vasculature was not fully normalized even after 21 days. 5. After removal of appliance, tension side of group III and IV showed vascular compression and loss of vasculature.

  • PDF

Effects of Chitosan on Human Periodontal Ligament Cells in Vitro (키토산이 배양중인 치주인대세포에 미치는 영향)

  • Kim, Ok-Su;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.163-180
    • /
    • 2001
  • The aim of this study was to evaluate the effects of chitosan coating on the attachment, proliferation, functional and morphological change of periodontal ligament cells. Primary human periodontal ligament cells were cultured in dulbecco's modified Eagle's medium with 10% fetal bovine serum and 1% antibiotics. In experimental group, cells of 4th to 7th passage were inoculated in the multiwell plates coated with chitosan in concentration of 0.22, 0.2, and $2mg/m{\ell}$. Cell counting and MTT assay were done after 0.5, 1.5, 3, 6 and 24 hours of incubation to evaluate the cell attachment, and then after 2 and 7 days of culture to evaluate the cell proliferation. The alkaline phosphatase activity was measured after 4 and 7 days of culture and the ability to produce mineralized modules was evaluated after 21 days of culture. The results were as follows : 1. The morphology of periodontal ligament cells on the chitosan coating was round or spheric. Round cells were aggregated after 6 hours of culture. Aggregated cells on the chitosan coated surface showed nodule-like appearance after 24 hours of culture and not achieved confluency at 7 days. 2. During early period of culture, the attachment of periodontal ligament cells were inhibited by chitosan coating. Inhibition of cell attachment tended to increase with the concentration of chitosan. 3. At the chitosan concentration of 0.02 and $0.2mg/m{\ell}$, periodontal ligament cells were more rapidly proliferated at 7 days, compared to the control group. At the concentration of $2mg/m{\ell}$, the proliferation of periodontal ligament cells was inhibitied(p<0.01). 4. Alkaline phosphatase activity of periodontal ligament cells was increased in chitosan coated group, especially at the concentration of $0.02mg/m{\ell}$after 4 days of culture.5. Periodontal ligament cells produced mineralized nodules on chitosan coated wells without the addition of mineralized nodule forming materials (ascorbic acid, ${\beta}-glycerophosphat$, dexamethasone). With the addition of mineralized nodule forming materials, periodontal ligament cells produced more mineralized nodules at the concentration of $0.02mg/m{\ell}$, compared to the control. In summary, the attachment, proliferation, cell activity, and alkaline phosphatase activity of periodontal ligament cells depended on the concentration of coated chitosan. Chitosan stimulated mineralized nodule formation by periodontal ligament cells. At the appropriate concentration($0.02mg/m{\ell}$), chitosan could increase alkaline phosphatase activity and stimulate the formation of mineralized nodule by periodontal ligament cells. These results suggest that chitosan can be used as an adjunct for bone graft material, and the matrix of tissue engineering for periodontal regeneration, especially bone regeneration.

  • PDF

Effect of Bisphosphonate on Osteoblastic Activity of the Human Periodontal Ligament Cells in Vitro (Bisphosphonate가 배양된 치주인대세포의 조골작용에 미치는 효과)

  • Kim, Eun-Young;Kim, Ok-Su;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.179-193
    • /
    • 2001
  • previous studies have demonstrated an increase in bone mass and density with use of bisphosphonate in osteoporosis. This agent acts as an inhibitor of osteoclastic activity and results in increase of net osteoblastic activity. The purpose of the present study was to examine the effect of the bisphosphonate on osteoblastic activity of the human periodontal ligament cells in vitro. Periodontal ligament cells were primarily obtained from extracted healthy third molars. Cells of 4th to 6th passage were cultured in Dulbecco's modified Eagle's medium containing alendronate sodium or etidronate disodium at the concentration of $10^{-12}{\sim}10^{-6}mol/L$ in 5% $Co_2$ incubator at $37^{\circ}C$. Cell count and MTT assay for cellular activity were done at 2 to 7 days of culture. Alkaline phosphatase activity at 4 to 7 days of culture and formation of mineralized nodules at 28 days of culture with addition of $50{\mu}g/m{\ell}$ ascorbic acid, 10 nM${\beta}-glycerophosphate$, $10^{-7}M$ dexamethasone were evaluated. 1. Alendronate sodium Compared to the control, the proliferation of periodontal ligament cells was generally increased and the cellular activity was maintained at 2 days of culture and generally decreased at 7 days of culture. Alkaline phosphatase activity of periodontal ligament cells was inceased and the formation of mineralized nodules by periodontal ligament cells was enhanced compared to the control. 2. Etidronate disodium The proliferation of periodontal ligament cells was increased at 2 days of culture and decreased or maintained at 7 days of culture. Compared to the control, the cellular activity of periodontal ligament cells was generally decreased. Alkaline phosphatase activity of peridontal ligament cells was increased and the formation of mineralized nodules by periodontal ligament cells was enhanced compared to the control. These results suggest that alendronate sodium and etidronate disodium may have a potential effect on osteoblastic lineage of periodontal ligament cells, distinct from their inhibitory action on osteoclasts and could contribute to enhance periodontal regeneration and alveolar bone regeneration.

  • PDF

Platelet-rich fibrin along with a modified minimally invasive surgical technique for the treatment of intrabony defects: a randomized clinical trial

  • Ahmad, Nabila;Tewari, Shikha;Narula, Satish Chander;Sharma, Rajinder Kumar;Tanwar, Nishi
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.6
    • /
    • pp.355-365
    • /
    • 2019
  • Purpose: The modified minimally invasive surgical technique (M-MIST) has been successfully employed to achieve periodontal regeneration. Platelet-rich fibrin (PRF) is known to enhance wound healing through the release of growth factors. This study aimed to observe the outcomes of periodontal surgery when M-MIST was used with or without PRF for the treatment of isolated intrabony defects. Methods: This randomized clinical trial was conducted on 36 systemically healthy patients, who had chronic periodontitis associated with a single-site buccal probing pocket depth (PPD) and clinical attachment level of ≥5 mm. Patients were randomly divided into 2 groups: the test group treated with M-MIST and PRF, and the control group treated with M-MIST alone. The primary periodontal parameters analyzed were PPD, relative attachment level (RAL), and relative gingival margin level. The radiographic parameters analyzed were change in alveolar crest position (C-ACP), linear bone growth (LBG), and percentage bone fill (%BF). Patients were followed up to 6 months post-surgery. Results: Intragroup comparisons at 3 and 6 months showed consistently significant improvements in PPD and RAL in both the groups. In intergroup comparisons, the improvement in PPD reduction, gain in RAL, and the level of the gingival margin was similar in both groups at 3 and 6 months of follow-up. Furthermore, an intergroup comparison of radiographic parameters also demonstrated similar improvements in C-ACP, LBG, and %BF at 6 months of follow-up. Conclusions: M-MIST with or without PRF yielded comparable periodontal tissue healing in terms of improvements in periodontal and radiographic parameters. Further investigation is required to confirm the beneficial effects of PRF with M-MIST.

Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold (3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • In tissue engineering, a scaffold is a three-dimensional(3D) structure that serves as a template for regeneration the functions of damaged tissues or organs. Among materials for scaffolds, polycaprolactone(PCL) and ${\beta}$-tricalcium phosphate(${\beta}$-TCP) are biodegradable and biocompatible. In this study, we fabricated 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %), and pure ${\beta}$-TCP scaffolds by a multi-head scaffold fabrication system. Scaffolds with a pore size of $600{\pm}20{\mu}m$ was observed by scanning electron microscopy. The effects of 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) and pure ${\beta}$-TCP scaffolds were analyzed by evaluating their mechanical characteristics. In addition, in an in-vitro study using osteoblast-like saos-2 cells, we confirmed the effects of 3D scaffolds on cellular behaviors such as cell adhesion and proliferation. In summary, the 3D blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) scaffold was found to be suitable for human cancellous bone in terms of its the compressive strength, biocompatibility, and osteoconductivity. Thus, blending PCL and ${\beta}$-TCP could be a promising approach for fabricating 3D scaffolds for effective bone regeneration.

Effects of platelet-derived growth factor and epidermal growth factor on the characteristics of beagle dog's periodontal ligament and bone marrow cells (혈소판유래성장인자와 상피성장인자가 치주인대세포와 골수세포의 성상에 미치는 영향)

  • Cho, Byeong-Do;Herr, Yeek;Park, Joon-Bong;Kwon, Young-Hyuk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.491-510
    • /
    • 1996
  • This study was performed to evaluate the effects of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) on the characteristics of beagle dog's periodontal ligament (BPD) cells and bone marrow (BBM) cells which have the important role on the early stage of periodontal tissue regeneration in vitro. In control group, the cells ($1.5{\times}10^5$cells/ml) were cultured alone with Dulbecco's Modified Eagle's Medium contained with 10% fetal bovine serum, $50{\mu]g/ml$ ascorbic acid, and 10mM/ml ${\beta}-glycerophosphate$. In experimental groups, growth factors, PDGF or EGF(10ng/ml), were added into the above culture condition. And then each group was characterized by examining the cell proliferation rate, amount of total protein synthesis, alkaline phosphatase activity at 1, 5, 9, 13, 17th day after seeding of cells into the culture wells. The results were as follows: 1. Both BPD and BBM cells in PDGF-treated group proliferated more rapidly than non-treated cells. This finding also was observed in EGF-treated group but it was not as prominent as that of PDGF-treated group. The proliferation rates of both cells showed the time-dependent pattern during experimental periods in all three groups. 2. Amount of total protein synthesis was more increased in PDGF-treated group than in control group. But no significant difference between EGF-treated group and control group was observed throughout experimental periods even though the tendency of amount of protein synthesis was time-dependent pattern. 3. Alkaline phosphatase activity also more increased in PDGF-treated group than control group. But slight decrease tendency was seen in both cells of EGF-treated group. From the above results, PDGF appeared to enhance the proliferation and cellular activities including amount of total protein synthesis and alkaline phosphatase activity of BPD and BBM cell, but EGF did not show notable effects. The optimal application of these growth factors was thought to be useful as the adjunctive means in periodontal regeneration procedures.

  • PDF

The SEM and SPM Study on the Change of Machined Titanium Implant Surface following Various Laser Treatments (수종의 레이저로 임프란트 표면 처리 시 표면 형태의 변화에 대한 주사전자 및 주사탐침 현미경적 연구)

  • Kim, In-Kyung;Chung, Chin-Hyung;Lim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.2
    • /
    • pp.451-463
    • /
    • 2001
  • Following the extensive use of implant, the incidence of peri-implantitis increases. Guided bone regeneration has been used for the optimal treatment of this disease. Because implant surface was contaminated with plaque and calculus, cleaning and detoxification were needed for the reosseointegration when guided bone regeneration was performed. Various mechanical and chemical methods have been used for cleaning and detoxification of implant surface, air-powder abrasive and oversaturated citrate were known to be most effective among these methods. However, these methods were incomplete because these could not thoroughly remove bacteria of implant surface, moreover deformed implant surface. Recent studies for detoxification of the implant surface using laser were going on, $CO_2$ laser and Soft Diode laser were known to be effective among these methods. The purpose of this study was to obtain clinical guide by application these laser to implant surface. 15 experimental machined pure titanium cylinder models were fabricated. The $CO_2$ laser treatment under dry, wet and hydrogen peroxide condition or the Soft Diode laser treatment under Toluidine blue O solution condition was performed on the each of models. Each groups were examined with SPM and SEM to know whether their surface was changed. The results were as follows : 1. Surface roughness and surface form weren't changed when $CO_2$ laser was usedunder dry condition(P>0.05). 2. Surface roughness and surface form weren't changed when $CO_2$ laser was used under wet condition(P>0.05). 3. Surface roughness and surface form weren't changed when $CO_2$ laser was used under hydrogen peroxide condition(P>0.05). 4. Surface roughness and surface form weren't changed when Soft Diode laser was used under toluidine blue O solution condition(P>0.05). From the result of this study, it may be concluded that the $CO_2$ laser having relatively safe pulse mode and the Soft Diode laser used with photosensitizer can be used safely to treat peri-implantitis.

  • PDF

중간엽줄기세포와 생분해성 매트릭스를 이용한 혈관 패치 개발

  • Jo, Seung-U;Kim, Dong-Ik;Park, Hui-Jeong;Choe, Cha-Yong;Kim, Byeong-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.98-100
    • /
    • 2003
  • Synthetic polymers such as PET and ePTFE have widely been used for artificial vascular patches. However, these materials cannot function for a long term as blood vessel due to thrombotic occlusion and calcification. To overcome this limitation, a biocompatible vascular patch was developed using stem cell and tissue engineering approach. Autologous bone marrow mesenchymal stem cells were differentiated into vascular endothelial cells and smooth muscle cells. These cells were seeded onto collagen patch matrices. The matrices were anastomosed to abdominal arteries in canine models. Prior to implantation, histological and scanning electron microscopical examination revealed stem cell adhesion and growth on the matrices. At 3 weeks, the implanted vascular patches were patent. Histological examination showed the regeneration of endothelium, media and adventitia in the grafts. Cell tracing analysis using fluorescent reagent showed that labeled stem cells were present in the implanted grafts and contributed to the regeneration of vascular tissues. This study may help us develop a tissue-engineered vascular patch appropriate for clinical applications.

  • PDF